
["ECHNICAL REPORTS

UNIVERSITY COLLECTION

NASA-CR-192738

'

(NASA-CR-192738) A

CONNECTTONIST/SYMBOLIC MOOEL FOR

PLANNING ROBOTIC TASKS (Rensselaer

Po|ytechnic Inst.) 24_ p

C _KSSE--IC-'?_

NAGW-| 333

nr_n TL_Li°_i_,S

_ w r _ Z9/6) 0_53766

• 1

Center for Intelligent
Robotic Systems
for Space Exploration

Rensselaer Polytechnic Institute

Troy, New York 12180-3590

Technical l_epor_el

En_"neer _n_ ant! p_ysica] _C_C_I_OOB _-_

A CONNECTIONIST/SYMBOLIC MODEL

FOR

PLANNING ROBOTIC TASKS

by

Michael Craig Moed

Rensselaer Polytechnic Institute

Electrical, Computer, and Systems Engineering

Troy, New York 12180-3590

December, 1990

CIRSSE REPORT #78

I

I

CONTENTS

LIST OF TABLES _ . . . vi

LIST OF FIGURES vii

ACKNOV_LEDGMENT x

ABSTRACT xi

I. INTRODUCTION 1

I.I Introduction 1

1.2 Problem Statement 2

1.3 Method of Approach 3

1.4 Organization of the Thesis 4

1.5 Contributions 6

2. PROBLEM INTRODUCTION AND LITERATURE REVIEW 8

2.1 Target World 9

2.2 Planning Models 10

2.3 Evaluation Functions for ._obotic Planning Systems 15

2.4 Symbolic Structure and the ARM 20

2.4.1 Agent classes 20

2.4.2 General Rules 22

2.4.3 SpecificRules 23

2.4.4 Limitations of this representation 24

2.5 The ARM as a Model 26

2.5.1 Training the model 27

2.5.2 The ARM as a neural network 29

2.5.3 Choice of an ANN model for the ARM 35

2.6 Recall of Robotic Actions 35

2.7 Conclusions 37

] ii

3. DESIGN OF THE ASSOCIATIVE RULE MEMORY 39

3.1 A Description of the Boltzmann Machine Model 41

3.2 Mapping the ARM onto a Boltzmann Machine 45

3.2.1 Specific rules and network nodes 45
d

3.2.2 Connection weights and the POE value ' 49

3.2.3 The topology of connection weights 51

3.2.4 General rulesand the ARM 54

3.2.5 Higher order nodes 56

3.3 Training the ARM 60

3.3.1 Training higher order nodes 64

3.3.2 Developing higher order nodes 66

3.4 Some Training Examples 70

3.4.1 Selectionof trainingconstants 77

3.5 Predicting POE Values for Untested SpecificRules 79

3.5.1 Untrained weights vs. zero weights 80

3.5.2 __×amples of prediction in the ARM 81

3.6 Extensions to the ARM model 84

3.6.1 The Knowledge Set 85

3.6.2 The Confidence Factor 87

3.7 Conclusions 89

4. ASSOCIATIVE RECALL - AN OPTIMIZATION TECHNIQUE 92

4.1 The ARM Energy Function 95

4.2 Two Optimization Techniques 95

4.2.1 Simulated Annealing 96

4.2.2 The Genetic Algorithm 97

4.2.3 Some initialexperiments: comparing SA and GA optimization

techniques 98

4.3 Reducing the Search Time of a Genetic Algorithm 100

4.3.1

4.3.2

4.3.3

4.3.4

4.3.5

An introduction to immigration I00

Background and motivation 105

A GA with the Immigration Operator 106

The Implementation of T'_'oGenetic Algorithms I09

Test Suite of Functions I11

Ill

P

!

o

o

4.3.6 Description of Experiments 117

4.3.7 Experimental Results 120

4.4 Convergence of a GA using Immigration 138

4.5 Representation of Nodes for Genetic Optimization- 144

4.6 Finding Sets of High POE Robotic Actions 149

4.7 Contributions and Conclusions 151

A BOLTZMANN MACHINE FOR THE ORGANIZATION OF INTELLI-

GENT MACHINES 153

5.1 The Mathematical Theory of Intelligent Controls 154

5.2 Knowledge Flow and the Principle of IPDI 158

5.3 The Organization Level as a Boltzmann Machine 160

5.4 Entropy as a Measure of Uncertainty 162

5.5 Contributions and Conclusions 164

A CASE STUDY 165

The Task Analysis Methodology 1_5

Case Study Goal 169

Design of the Case Study using the Task Analysis Methodology . . . 170

6.3.1 The world model and sxlnbol classes 170

6.3.2 A general rule grammar 171

6.3.3 The ARM network 175

6.4 Case Study Experiments 178

6.4.1 Experimental Procedure 178

6.4.2 Experimental Suite 178

6.4.3 Training results 186

6.4.4 Examples of Prediction 187

6.5 Associative Recall of Robotic Actions 194

.6.1

6.2

6.3

6.5.1

6.5.2

6.5.3

6.5.4

6.5.5

6.5.6

Representation of Nodes 194

The GA search process 199

Embodying planning constraints into the recall process 200

Experimental procedure 202

Experimental results: Efficiency of the GA 202

Experimental results: Optimal robotic actions 204

6.6 Conclusions 209

7. CONCLUSIONS 211

7.1 Summary and Conclusions 211

7.2 Recommendations for Future Research 213

APPENDICES 225

A. SYMBOL DEFINITIONS 225

B. SYMBOL CLASS HIERARCHY 229

LIST OF TABLES

3.1

6.1

6.2

Convergence and find error for test examples 76

Results of case study training sets 187

Results of case study associative recall 203

vi

1

11

LIST OF FIGURES

2.1

2.2

2.3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

ARM system block diagram 19

ARM system block diagram with rule database 28

ART architecture 31

Diagram of nodes for a typical ARM network 48

Diagram of asserted nodes for a typical ARM network 50

Diagram of nodes and connections for a typical ARM network 53

Diagram of general rule inhibitions for a typical ARM network 57

Diagram of higher order nodes for a typical ARM network . . 59

A training example 72

A second training example 73

A training example with higher order nodes 74

A second training example with higher order nodes 75

Block diagram with ARM displayed 91

Best performance of GA 101

Worst performance of GA 101

Best performance of SA 102

Worst performance of SA 102

ARM system block diagram with GA for associative recall . . 103

F1 - Average Number of Evaluations using Steady State GA . 122

F2 - Average Number of Evaluations using Steady State GA . 122

F3 - Average Number of Evaluations using Steady State GA . 123

F4 - Average Number of Evaluations using Steady State GA . 123

F5 - Average Number of Evaluations using Steady State GA . 124

vii

4.11

4.12

4.13

4.14

4.15

4.16

4.17

4.18

4.19

4.20

4.21

4.22

4.23

4.24

4.25

4.26

4.27

4.2S

4.29

4.30

5.1

5.2

6.1

6.2

6.3

6.4

F6 - Average Number of Evaluations

F1 - Average Number of Evaluations

F2 - Average Number of Evaluations

F3 -Average Number of Evaluations

F4 - Average Number of Evaluations

F5 - Average Number of Evaluations

us,ng

using

using

using

using

using

F6 - Average Number of Evaluations using

Steady State GA

Restarted GA

Restarted GA

Restarted GA

Restarted GA

Restarted GA

Restarted GA

124

125

125

126

126

127

127

F1 - 0 Lmmigrations

F1 - 2 Immigrations

F2 - 0 Immigrations

F2 - 3 Immigrations

F3- 0 Immigrations

F3- 2 Immigrations

F4 - 0 Immigrations

F4- 1 Immigrations

F5 - 0 Immigrations

F5 - 3 Immigrations

F6 - 0 Immigrations

F6- 1 Immigrations

Per Generation 132

Per Generation 132

Per Generation 133

Per Generation 133

Per Generation

Per Generation

Per Generation

Per Generation

Per Generatlon

Per Generation

Per Generation

Per Generation

............... 134

............... 134

............... 135

............... 135

............... 136

............... 136

............... 1:37

............... 137

Encoding of Actor nodes for the GA 148

Intelligent Machine Hierarchy 153

Organization Level of Intelligent Machine 156

Task Analysis Methodology Flowchart 168

Case Study General Rules 173

Case Study General Rules. cont'd 174

Input levels and nodes for case study network 176

°°°

Vll!

i

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.I2

6.13

6.14

6.15

6.16

6.17

B.1

B.2

B.3

Output levels and nodes for case study network 177

Training set 1 180

Training set 2 181

Training set 3 182

Training set 4 183

Training set 5 184

Training set 6 185

Training set 7 185

Prediction using training set 1 189

Prediction using training set 3 190

Prediction using the combined training set 193

Representation exaznple for agents in < robot. > class 196

Representation example for agents in < fix > class 197

Classification of agents in the world model 230

Classification of agents in the world model, cont'd 231

Classification of agents in the world model, cont'd _.232

ix

11

I

ACKNOWLEDGMENT

I wish to express my sincere gratitude to Robert Kelley, for the advice, encourage-

ment and support that he provided during the years I have spent at Kensselaer.

Special thanks go to Chuck Stewart, who sparked my interest in Genetic Al-

gorithms and worked with me to develop many of the concepts addressed in this

thesis. Thanks also goes to George Saridis who greatly _ded in my development as

a PhD candidate and a colleague.

I would like to thank all my committee members for providing the guidance

and direction that allowed me to develop this work.

I am indebted to Robert O'Bara and Glenn Tarbox, primarily for their valued

friendship, but also for reading drafts of this thesis. Thanks also goes to Philippe

Jacob for his friendship during my Pennsvtvaaaia and Rensselaer tenure.

I would also like to acknowledge all the members of the old RAL and of CIRSSE

who made our labs an enjoyable place to work.

It is di_cult to describe in these few lines the love and encouragement provided

by my parents, Annette and Richard, and my brother, Edward, throughout the

years. Without their support, I would not be where I am today.

Finall , _ _hank my fiancee', Deborah, for her love, support and automobile

driving abilities. The last two years we've spent together make me look forward to

our next 50.

m

i

ABSTRACT

This work develops an eva/uation system, called the Associative Rule Memory

(ARM), designed to operate with an interactive or automatic planner in a robot-

based world model. The ARM ranks Mternative robotic actions based on the prob-

ability that the action works as expected in achieving a desired effect. The system

is experience-based, and can predict the probability of achieving a desired effect for

robotic actions that have not been explicitly tested in the past. The ARM is con-

structed to quickly and efficiently find high probability of effect robotic actions for

a given desired effect. The design of the ARM is based on a neural network called

the Boltzmann Machine, which is adapted for this work. An algorithm is presented

for training the AR.M on tested robotic ;_ctions, and it is shown to globally converge

to an accurate representation of the training set. Also, the network is abIe to de-

velop hidden nodes that represent higher order relationships through the training

procedure. The Genetic Algorithm (GA) is used for associative recall on the ARM,

and is shown to be applicable to searching a Boltzmann Machine. An immigration

operator is added to the GA, and the modified GA is shown to be more efficient on

a test suite of functions. A proof is constructed that guarantees that the GA with

immigration will converge in probability to the optimum of a given function. The

use of the ARM as the Organization level of the Intelligent Machine is demonstrated.

The functions of the ARM are tested in the world of the NASA Flight Telerobotic

Servicer and results detailing accuracy and efficiency are presented.

I

!

?

\

CHAPTER 1

INTRODUCTION

I.I Introduction

Automatic, computer-based systems have been developed to mimic the plan-

ning capabilities of people. These systems plan in an abstract model of the world

that does not capture all the features and details of the real world. The planners

concentrate on the significant aspects of objects in the world to reduce the di_culty

of plan formation. It is important, however, that the abstract model contain suffi-

cient detail, so that an automatically generated plan can be executed reliably in the

real world.

Some systems plan by using a divide and conquer strategy to recursively sep-

arate plan goals into subgoals, and then attempt to solve each subgoal of the plan.

Other systems plan in successive levels, by developing high level plans first, and

recursively expanding, detailing and ordering each item in the plan. Some systems

assign a cost to each step, and build a pla_l from the sequence of steps minimizing

the total plan cost.

In many world models, there exist several ways to accomplish a step in a plan.

If the world is su_ciently complex, the number of possible alternatives can become

quite large. When developing plans in such a world, the size of the search space for

the plan becomes combinatorially huge.

When people plan, they are often faced with a large number of possible alter-

natives for each plan step, yet are usually able to develop a sequence of planning

steps quickly and efficiently. People are able to rule out many alternative steps

by using previous experiences to determine which candidate steps will work well.

When specific experience is lacking in • particular domain, a person attempts many

2

alternative plans, trying to relate previous experience to the new situation, until a

desired goal is achieved.

To limit the number of alternative steps in an automatic planning system, an

experience-based evaluation function can be applied to rank each of the candidate

steps according to some optimality criteria. Selecting the optimal step, or set of

near-optimal steps for possible plans would greatly reduce the planning search space.

It is possible that past experience may not cover a particular planning step.

In this case, it is necessary to predict the optimality of candidate steps by using

related experience of similar steps.

Since the number of possible steps can be quite large, however, ranking each

alternative can be rather time consuming. Instead, a search technique may be

employed to find an optimal step, or set of near-optimal steps quickly and ei_ciently.

This thesis develops an evaluation system designed to operate with an interac-

tive or automatic planner in a robot-based world model. The planning step in this

model is called a robotic action. The change that it should produce in the world

model iscalled a desired effect.The evaluation system ranks a candidate robotic

action based on the probabilitythat itworks as expected in achieving itsdesired

effect._":= system isexperience-based, and can predictthe probabilityof achieving

a desired erect for robotic actions that have not been explicitlytested in the past.

A search technique isalso present in the system that quickly and efficientlyfinds

optimal robotic actions for a given desiredeffect.

1.2 Problem Statement

For a sufficientlycomplex world, an interactiveor automatic planning system

may contain a large number of robotic actions that can achieve the same effecton

the world model. Since a large number of robotic actions leads to a large planning

search space, a method must be developed to reduce the number of candidates, for

| 3

a given desired effect.This method must:

i. Receive a desired effectas input from a user or automatic planning system.

2. Evaluate and rank the robotic action candidates according to some optimality

criteria.

3. Quickly and efficiently search the set of candidates for an optimal robotic

action, or set of near-optimal robotic actions that achieve the desired effect.

4. Output the optimal robotic action, or a set of near-optimal robotic actions,

along with their evaluation function values.

For this study, we designate the optimality criteria to be the probability that

a robotic action achieves a desired effect. This will be called the probability of effect

value. Using this criteria with a sufficiently complex world model, it is apparent

that it is difficult to test all possible sets of robotic actions and effects to determine

their probability of effect values. Instead the method must:

1. Be provided with a set of tested robotic actions and effects along with corre-

sponding probability of effect values. This is called a training set.

2. Use this training set to predict probability of effect values for untested robotic

action/effect pairings.

The method must also show applicability to planning systems, including the

Organization level of the Intelligent Machine [1]. Finally, this method must demon-

strate these capabilities through a case study using a target robotic environment.

P

1.3 Method of Approach

The following approach is used to develop a system that solves the problem

stated above.

4 •

i. A set of system requirements and constraintsaxe outlined.

2. A grammar isdefined to allow the system to interfacewith a user or automatic

planner.

3. Several models axe considered to form the evaluation function,which must be

trainable and provide predictiveprobabilityof effectvalues.

4. An evaluation function model ischosen based on itscapabilitiesand described

in detail.

5. The architectureof the chosen model isspecialized_o fitthe constraintsof the

above problem.

6. A method for training the model to a desired degree of accuracy isdeveloped.

7. The model isshown to demonstrate the abilityto reliablypredict probability

of effectvalues for untested robotic actionlefect pairings.

8. Dii_erenttechniques for searching for roboticactionsgiven a desired effectare

examined given the constraintsof the developed model.

9. Methods for specializingand acceleratingthe chosen technique are developed.

10. The search technique ismodified so that itcan provide setsof high probability

of effectrobotic actions as output when given a desired elect as input.

ii. A case study involving a complex targetroboticenvironment isdeveloped and

the capabilityof the system to perform as desiredisdemonstrated.

P

1.4 Organization of the Thesis

The thesisisorganized as follows.

I

!

!

! 5

• Chapter 2. This chapter provides an in-depth introduction to the problem and

also presents a literaturereview of recentresearch in related areas. The target

world model for this thesisis described. Differentevaluation functions are

discussed and necessary capabilitiesfor an evaluation function model, called

the Associative Rule Memory, are defined. Input/Output and structural re-

quirements axe defined for the model. Candidate neural network models are

reviewed to form the model of the evaluation function. A Boltzmann Machine

ischosen based on itscapabilities.Differentoptimization techniques are also

reviewed.

I Chapter 3. This chapter develops the Associative Rule Memory model using

the formulation of a Boltzmann Machine. The theory behind the Boltzmann

Machine is review=u and critiqued. A specialized architecture based on the

Boltzmann Machine is developed to fit the requirements of the Associative

Rule Memory. A technique for training the model is developed and shown

to conv_'ge to the correct representation. Examples of training are provided

and the ability of the Assodative Rule Memory to predict probability of effect

values for untested robotic action/effect pairings is shown.

• Chapter 4. This chapter examines search techniques for the Associative Rule

Memory. The requirements for a search technique are outlined based on the

constraints of the Associative Rule Memory. Simulated annealing and the

Genetic Algorithm are compared for search efficiency. A method to reduce

the search time of a Genetic Algorithm, called immigration, is described and

experiments are discussed. A proof is developed to show that a Genetic Al-
P

gorithm enhanced with the immigration operator will converge in probability

to the global optimum of a cost function. Representation issues are exam-

ined. Also, modifications to the Genetic Algorithm to allow it to find sets of

6

solutions axe outlined.

• Chapter 5: This chapter reformulates the Organization levelof the Intelligent

Machine as a Boltzmann Machine and demonstrates that the Associative Rule

Memory can be used to form thislevel.An introductionto IntelligentMachines

isprovided, _ong with a mathematical descriptionof the Organization level.

• Chapter 6: This chapter provides a case study using the Associative Rule

Memory in the world of the NASA Flight TeleroboticServicer.

• Chapter 7: This chapter discussesthe overallsystem and presents the conclu-

sions of this thesis.

1.5 Contributions

The main contributionsof the thesisare as follows.

I. The development of a model that willproduce a setof optimal robotic actions

as output, given " ___iredeffec_as input.

2. The design of a neural network model that is able to represent a symbolic

grammar comprised of a robotic action and effect.

3. The abilityof thismodel to maintain instantiationsof"the graxnrnax with a real

valued number representing the probabilitythat the robotic action achieves

the desired effect.

4. A training procedure that guarantees that the network willdevelop accurate

probability of effectrepresentationsforallrobotic_tion/effect pairingsin the

training set.

5. A training procedure that develops weighted connections in a neural network

that represent the extent to which a robotic action symbol affectsan effect

symbol.

!

7

6. A technique for adding higher order nodes to a neural network model when

necessary, and pruning them when they axe unnecessary.

7. A demonstration that the training procedure builds neural network connec-

tions that can.be used for predicting probabilityof effectvalues for untested

robotic action/effectpairings.

8. The development of the immigration operator for Genetic Algorithms and

the demonstration that immigration improves the performance of a Genetic

Algorithm on functions that possess dJ_cult localoptima.

9. The proof that a Genetic Algorithm combined with the immigration operator

willconverge in probabilityto the global optimum of a cost function.

l

I I

CHAPTER 2

PROBLEM INTRODUCTION AND LITERATURE REVIEW

Planning systems, whether automatic or interactive, attempt to develop a set of steps

that change the world model, or environment, from an initial state to a goal state.

Each step in the plan dictates an action, a set of agents that perform the action,

and a set of agents on which the action should be performed. In environments that

possess a large number of agents as well as a large number of possible actions, the

number of possible alternatives for any step in a plan becomes combinatorially large.

To reduce the planning search space that these alternatives produce, an evaluation

function can be applied to the set of alternatives, and a rank can be assigned to

each choice based on the likelihood that the choice will lead to a successful plan. By

selecting the best alternatives as possible planning steps, the combinatorial explosion

of plan choices is eliminated.

This chapter t_egins the deveiopment of a particular planning evaluation tech-

nique, called the Associative Rule Memory (ARM), which is designed to rank and

select steps in a robotic planning system. The purpose of this chapter is twofold.

First, it serves to introduce the problem that this thesis addresses. Second, it

presents a literature review that describes recent research in related areas.

Section 2.1 of this chapter presents the target world model for our system. Sec-

tion 2.2 presents several automatic planning systems, and determines the necessity

of an evaluation function for large numbers of alternative steps. Section 2.3 discusses

different evaluation functions and dictal;es the capabilities that must be possessed

by'an evaluation function. Section 2.4 examines the input/output and structural

requirements placed on an evaluation function to allow it to work within a planning

system. Section 2.5 reviews different neural network models that can be used for the

ARM. Optimization techniques for the ARM are presented and reviewed in section

9

2.6. Conclusions are presented in section 2.7.

2.1 Target World

The target world for thisstudy iscomposed of

i. A set of actors which includes

(a) Manipulators

(b) Positioners

(c) Transporters

2. A set of objects which includes, but is not limited to

(a) Tools

(b) Platfo :-.._

(c) Pallets and Carriers

(d) Bays and Loading sites

It is possible for an actor to be used as an object. Together, actors and objects are

referred to as agents.

Each agent possesses a set of state._, that describes features of the agent in

the world model. An actor can perform an action on an object, perhaps by using

another cbject, and the result is a change in the state of the first object. When

this occurs, the combination of actor, action and objects is said to perform a robotic

action. The change of state of the first object is said to be the effect. In the target

world, it is possible for many different robotic actions to achieve the same effect.

This allows redundancy in the world, which adds extra freedom to that way that

tasks can be performed.

The agents and actions of the world have been abstracted for planning and

modeling purposes, and are represented by symbols. The actor symbols are referred

|

l0

I

to as ACTORs, object symbols as OBJs and action symbol as ACTIONs. A list

of symbols that are used in this study are presented in Appendix A. The agents and

actions used in this study are based on the world of the NASA Fight Telerobotic

Servicer Task Analysis Methodogy [2], as further described in Chapter 6.

2.2 Planning Models

One of the earliest planning systems was STRIPS [3]. The world model for

STRIPS is a set of first-order predicate calculus well-formed formulas (wffs) that

represent the state of agen(;s in the world. STRIPS also consists of a set of operators

that, when applied, transform the world model into a new world model. Each

operator is composed of three parts: conditions, action, and effects. The conditions

dictate when the operator can be used and are comprised of wffs. The action is

simply a string representing the action in the real world. The effects dictate the

changes in the world model if the action is performed, and are a set of wffs that

determine which i(;ems from the world model should be added or deleted.

STRIPS combines Means-End Analysis [4] with logic resolution techniques to

develop a plan of actions to change the initial world model to a goal world model.

The basic procedure is as follows.

1. Find the wff agent state differences between the current world model and a

(sub)goal world model.

2. Construct a set of operators whose effects will eliminate some of these differ-

ences.

3- Select one operator from the set of candidates, inst_tiate it with agent sym-

bols available in the world model, and form new subgoals from the conditions

of this operator.

4. Eliminate those subgoals that can])e resolved from the current model.

il

5. If the current model is not the same as the goal world model, go to 1.

Step 3, the selectionand instantiationofan operator for application,isrelevant

to our discussion. In STRIPS, a candidate operator isselectedifthe clauses on its

effectlistcan resolve away differenceclauses between the current and (sub)goal

world models. The operator isthen instantiatedwith agent symbols that allow this

resolutionto occur.

For a reasonably complex environment, such as our target world model, there

may exist many operator instantiationswhose add listcan resolve away the same

differenceclauses. This isdue to the fact that in our target world, many different

robotic actionsmay lead to the same set ofeffects.This leads to a very largenumber

of candidate operators, allof which appear appropriate.

;.;7each candidate operator is selectedfor application,the search tree would

grow geometrically. To prevent this, only a small subset of candidate operators

should be selected for application. To reduce the nu_'--_r of possible operators,

each must be evaluated and ranked according to some defined criteria.The highest

ranked operator or operators could then be selectedfor application. STRIPS does

not provide thisfunctionality.Therefore. constructing a plan using STRIPS in our

target world may lead to a combinatorial explosion in the planning search space.

Another problem of STRIPS isthat itcan not be guided to solve the main part

of a plan first,and reserve the detailsfor laterplanning. This leads to excessive

search times when developing plans because each detailof a plan is treated with

equal importance. To overcome this limitation,ABSTRIPS [5],was created to

develop plans in successive levelsof detail.

- ABSTRIPS is based on the STRIPS model. To plan at successive levelsof

detail,ABSTRIPS ranks each precondition of an operator as a function of itsim-

portance in a plan. Preconditions are assigned high values ifthey are necessary for

the main part of a plan. Preconditions are assigned low values ifthey are considered

!

i 12

details. For each levelof detail,or abstraction level,ABSTRIPS uses Means-End

Analysis to create plans by using only those preconditions of operators whose value

isgreater than that level.By creating high levelplans and successivelyrefiningthem

at lower levels,an overallplan isdeveloped in significantlylesstime than STRIPS

would require.

Sarcedoti states

_A good heuristic evaluation function will enable a problem solver to

reject most of the possible paths in a situation space".

The heuristic evaluation function he chose was to rank the preconditions to elim-

inate search tree branching at each abstraction level; however, another evaluation

function is also required. As one can see, ABSTRIPS suffers from the same malady

as STRIPS if used to plan in our target world. The elimination of preconditions

for abstract planning does nothing to reduce the number of possible robotic ac-

tion alternatives that our target world provides at each planning step and in each

abstraction space.

NOAH [6] moved away from the predicate calculus, Means-End analysis plan-

ning style and introduced _procedural nets" to produce plans with nonlinear con-

straints such as operations that have to be time ordered for successful execution.

Each procedural net contains an action at some level of detail, along with _fork" and

_join" nodes for combining actions that can be executed in parallel. As the net is

expanded level by level, a set of knowledge-based critics examine the actions at the

current level and dictate those that must be ordered, and those that can execute in

parallel. When the bottom level of the net is reached, the action nodes correspond
P

to actions that must be performed by agents in the given world.

When creating robotic actions, NOAH will avoid binding an ACTOR or OBJ

variable to an agent symbol until it is absolutely necessary. This least-commitment

13 •

approachadds a degree of flexibility to planning, since it allows uninstantiated vari-

ables to be set by other system constraints, such as resource availability. Sarcedoti

suggests employing a "Use Existing Objects" critic, which conserves resources by

binding variables to agent symbols that have already been used in planning.

For a reasonably complex environment, such as our target world, many of

the variables will be left uninstantiated at the final level of the plan, since many

robotic actions can achieve the desired effects needed by the plan. The _Use Existing

Objects" critic will not be able to bind all the uninstantiated variables, so another

critic, in the form of an evaluation function, is needed to select the ACTORs,

ACTIONs, and OBJs that should be used.

Other planning systems followed that use some of the ideas presented in

NOAH. MOLGEN [7, 8] combines hierarchical planning and a least-commitment

approach with variable constraint passing. As planning steps are developed, MOL-

GEN develops a constraint list that limits the agents that can be used to instantiate

variables in planning steps. The constraints aid the planning system by reducing

the size of the search space for each ptaaning step. NONLIN [9] adds backtracking

to NOAH to reduce the possiblity that a suitable plan is not found.

The SIPE [10] planner is also based on the NOAH system, but is one of the

first planners to integrate feedback into planning. If a failure occurs during the

executio.:'. _" _- ge=era_ed plan, a SIPE module examines the state of the world after

the failure and replans the task from the current state. SIPE also adds MOLGEN-

like constraints and backtracking to the NOAH system.

Recently, Rokey [11] developed a two-level planner for the JPL telerobot

testbed. The planner, TIPS, draws strongly from NOAH and SIPE, and is de-

signed to operate in a multiagent, redundant world. Stage I of the planner employs

procedural nets to develop a set of largely uninstantiated actions that achieve a

given goal. Stage 2 of the planning system binds ACTOR and OBJ symbols to

!

!

14

uninstaatiated variablesusing opportunistic scheduling heuristics.In thisstage,the

agents axe viewed as resources, and availableresources can be assigned to a given

action, much in the same way a computer operating system allocatesresources to

running processes. Resources that are not availableform the set of constraintsfor

each planning step. Stage 2 allows the planner to recover from unexpected failures

by reallocatingresources on-line,ifnecessary.

In effect,the scheduling heuristicsform an evaluation function that ranks

possible robotic actions, and assigns higher values to those that represent under

utilizedagents. Itisquite possiblefor many possiblerobotic actions to achieve high

ra_kings after evaluation, iftheir agents are availablefor use. This is particularly

true in a highly redundant setting,such as our target world. The addition of a

second evaluation function can be used to reduce the number of candidate robotic

actions that achieve the desired effectthat has been provided by Stage i of the plan.

Saxidis et ai. [I,12, 13, 14, 15, 16] have developed the concept of an _Intelli-

gent Machine _ that combines elements from the disciplinesof ArtificialInteLligence,

Operations Research and Systems Theory. The Organization levelof the Intelligent

Machine, as discussed in lIT, 18],is responsible for high level planning activities.

The function of the Organization level is to form activity strings from primitive

events and order the activitystringsto form plans. Under thi_ theory, the primitive

events represent abstracted actors,actions and objects in the world.

The theory of IntelligentMachines emphasizes a mathematical approach to

planning by selectingactivitystrings that minimize a system cost function. This

cost function is the Entropy of the activity,and represents the uncertainty of the

activity.In other words, the Entropy function forms the evaluation function that

eliminates candidate robotic actions that are highly uncertain.

Valavanis [17]proposed one algorithm forselectingprimitive events for activ-

itiesbased on their Entropy values. Unfortunately, the suggested algorithm can be

15

computationaUy expensive, especially for large numbers of possible activities. This

places a second requirement on possible evaluation functions: If a large number of

candidate robotic actions exist for a given planning step, the evaluation function

must efficiently determine a subset of candidates that are optimal with respect to

the evaluation function.

2.3 Evaluation Functions for Robotic Planning Systems

At each step in a plan, a robotic action is used to change the state of the

world. In a complex world, many robotic actions may lead to the same effect. For

a given effect,an evaluation function can be applied to the set of applicable robotic

actions to determine which candidates from the set are _optimal" in some sense.

The non-optimal candidates can then be eliminated and only the optimal robotic

action(s) willbe used as a planning step.

Many differentoptimality criteriacan be applied to robotic actions. Some of

these are:

• Uncertainty in achieving the desired effect.

• Complexity in achieving the desired effect.

• Time to complete desired effect.

Each criteriacan rank the set of robotic actionsto determine an optimal one for the

given desired effect.The evaluation function that we consider in this work is the

uncertainty of a robotic action in achieving a desired erect.

Consider a world with many actors,objects,and differentactions that can be
F

performed by the actorson the objects. To achieve a desiredeffect,an actor,action

and a set of objects must be selectedto form the robotic action.From the structure

of the robotic action, many agents and actions may be possible.

I

l 16

It is likely, for exaa'nple, that certain actors work better than others at achieving

a particulaz effect. It may also be the case that certMn tools cannot be reliably used

to achieve a particular effect, while other similar tools can. In some situations, an

actor and object may not work well together in achieving an effect. All of these

factors contribute to the uncertainty thai a robotic action successfully achieves a

desired effect.

It would be extremely useful if, given a desired effect, the evaluation function

could examine the set of symbols contained in a candidate robotic action and pro-

duce a value representing the probability that the robotic action causes the desired

effect. This probability will be referred to as the protmbilit v of effect (POE) for

a robotic action and a desired effect. The POE value could be developed through

experimentation in the environment and stored in a database. It would be even

more useful if a desired effect could be provided as input to a system that contains

the evaluation function, and have the system produce, a_ output, the single robotic

action which has the highest probability of achieving the desired effect, out of all

the candidate robotic actions. Perhaps this system could be extended to produce a

set of high POE robotic actions. Robotic actions that have low POE values could

then be eliminated from the candidate list.

A major difficulty in developing such a robotic action evaluation function is

that the function must be able to produce POE v_lues for all robotic actions given

a desired effect. Since the number of possible robotic actions can be extremely

large, it is unreasonable to believe that all possible actions could be tested and their

POE values stored. Instead, given a limited number of robotic action/desired effect

pairings and their corresponding POE values (developed through experimentation

in the world), the evaluation function must be able to infer POE values for untested

robotic action/desired effect pairings. Thus, given a training set of robotic actions,

effects and their corresponding POE values, the function must be able to recognize

1T •

relationshipsbetween symbols in the trainingset and exploit these relationshipsto

inferPOE values for untested situations.

This thesisdescribes the development of the Associative Rule

Memorv (ARM), a system that possesses the followingcapabilities.

i. The storage of provided robotic action/desiredeffectpairingswith POE values.

2. The abilityto extract relationshipsbetween symbols which affectPOE values

and use these relationships to provide predictive POE values for untested

robotic a_:tion/desiredeffectpairings.

3. The abilityto provide as output, a set of robotic actions that have a high

probabilityof achieving a desired effect,given the desired effectas input.

Figure 2.1 presents a block diagram of the system. The individual blocks are

defined as

• a database of robotic actions,effectsand corresponding POE vaJues,

• the ARM model, responsible for storing the database of robotic actions and

effectsand predicting POE values for untested robotic action/desired effect

pairings,

• an input/output interfacethat receivesa desired effectfrom a user or auto-

matic planning system as input, and responds with a set of high POE robotic

actions as output,

• a recallprocedure used to search the ARa'VIto find a set of high POE robotic

- actions,given a desired effect.

There axe several ways that the ARM can be used to aid in planning. As

discussed above, the ARM can be used to rank alternativerobotic actions for

a given effectto reduce the sizeof the planning search space. An automatic

I

I

planner can then build a set of tasks that achieve a goal using the POE value

as a cost metric to determine an optima/ planning path to pursue. This is

similar to the use of an A" se_ch algorithm for planning.

The ARM can also interact with a user who is faxn_liar with the target en-

vironment to develop a plan manually. The ARM can be used to provide

alternative robotic actions to the user, or can provide the user with relation-

ships between agents in the world that have been extracted from the database

of robotic actions a.nd effects. Using these relationships, the user can deter-

mine combinations of agents that work well together, and those that should

be avoided.

19 •

ofl_bocic

Acdons

OP.OA.NIZAT/ONOF MODEl.

I

Seaof_i_

POERobouc Ac_ons

0un_

_mm/= _n))

b_l_ of

PoEvaJm=
for RoboOc

Ac=o_

CAP_ !

Figure2.1:ARM systemblockdia_a.m

11

2.4 Symbolic Structure and the ARM

The planning system can involve user interaction,or it can be an automatic

planner likethose previously discussed. The ARM must be able to function within

such a planning system in order to be useful. This need places several structural

requirements and limitationson the ARM.

Each of the previously cited planning systems represents the robotic action

and effectoperator as a grammar. For STRIPS and ABSTRIPS, this grammar is

first-orderpredicate calculus.For NOAH and TIPS, a grammar isdeveloped under

the auspices of procedural nets,whose actionsappears similarto the grammars used

by expert systems such as OPS5 [19].Both ofthese grammars contain variablesthat

must be bound to symbols representing agents and actions in the real world. The

grammar of the Organization levelof the IntelligentMachine is an ordered listof

primitiveevents that obey a set of compatibility constr_nts.

We willdefinea grammar for the ARM that issufficientlygeneral to encompass

all the representations. The purpose of a grammar for the ARM is to define an

expected set -fm_uts _nd outputs, and to limitthe set of symbols that can be used

together. The ARM grammar consists of two parts, general rules and specific

rules. General rules contain variables for actor, action and object symbols and

provide guidelines for allowable combinations. Specific rules are instantiationsof

geno'r_lruleswith symbols from the world model. Before the actual structure of the

rulesispresented, however, itisfirstnecessary to discuss agent classes.

2.4.1 Agent classes

A robotic action generally consistsof an actor,an action, and an object the

acti_)nisperformed on, often calledthe directobject. The robotic action may also

consistof a set of indirectobjects. Consider the following robotic action

FTS ATTACH ORU PALLET-H

achieving the effect

ORU IS - ATTACHED - TO PALLET - H (2.1)

Here, the actor is represented by the symbol FTS, the action is represented by

ATTACH, the direct object is 0/t0", and the indirect object is PALLET1. This

action represents the Flight Teterobotic Servicer (FTS) attaching (ATTACH) the

Orbital Replacement Unit (ORb') to the heavy Pallet (PALLET-H). It is likely that

only dextrous maaipulators can attach objects to other objects, so other types of

actors, such as a Mobile Transporter, should not be used with the ATTACH action.

A robotic action may also require a tool to accomplish its task. For example,

EVA ACTUATE ORU TOOLSET1

with effect:

ORU IS- ACTUATED (2.2)

specifies that Toolset 1 must be used by the Extravehicular Astronaut (EVA) to

actuate the Orbital Replacement Unit. Again, it is unlikely that a non-dextrous

manipulator can successfully actuate an obiect. It is also unlikely that actuation

can take place with an indirect object other than a tool.

We define an agent class to be a set of agents that possess similar characteris-

tics with respect to the actions they can perform, or actions that can be performed

with them. Following directly, a symbol c/ass is the symbolic representation of an

agent class. The name of a symbol class will be denote by < • >. It is important to

note that agents may belong to several agent classes. Therefore, the same symbol

may exist in several symbol classes.

" In the above examples, both FTS and EVA belong to the symbol class

< de:r >, the set of symbols for dextrous manipulators. Similarly, the symbol

TOOL1 belongs to the symbol class < tool >, the set of tool symbols. A full list of

i

1

symbol classesused in this work along with the symbols that belong to each class,

is presented in Appendix B.

2.4.2 General Rules

Symbol classesare used to limit the scope of a robotic action, by reducing

the number of possibleinstantiations.This isdemonstrated by the structure of the

general rules.

General rules are formed by the grammar

ACTORC ACTION RECOBJC .===_

where

. ACTORC is a variable representing a symbol class containing actor symbols.

• ACTION is a symbol denoting an action.

• RECOBJC e {OBJC I OBJC RECOBJC}

• --, separates the robotic action (ACTORC ACTION RECOBJC) from the

effect (OBJC STATE OBJC) and means "produces the effect".

• OBJC is a variable representing a symbol class containing object symbols.

• STATE is a symbol denoting a state of an effect.

From the above description, the robotic action part of the rule can contain a number

of object classes. It is important to note that NULL, is a symbol class, and is used

as a-placeholder when no agent or object is needed.

An example of a general rule is

< dez > ATTACH < obj > < obj > --,

OBJC STATE OBJC (2.3)

<oh j>

another example is

IS - ATTACHED - TO <oh j>

< dez > ACTUATE < obj > <fool> -..¢.

< obj > IS-ACTUATED NULL

The general rules are used to dictate allowable combinations of symbols that

the ARM should expect. They axe similar to the non-instantiated rules that are

present in the planning systems discussed above, and the compatability constraints

of the Organization level. If a symbol combination violates a general rule, it is illegal.

The ARM should be able to identify illegal symbol combinations, and prevent them

from being used in planning.

2.4.3 Specific Rules

Specific rules are instanuacions o[genera_ rules with agent symbols. The form

of a specific rule is

ACTOR ACTION RECOBJ ..-.

OBJ STATE OBJ (2.4)

where

• ACTOR is a symbol of a symbol classrepresentingactors.

• ACTION is a symbol denoting an action.

• RECOBJ _ {OBJ I OBJ RECOBJ}.

• _ has the same meaning as in general rules.

• OBJ is a symbol of a symbol class representing objects, or is NULL.

• STATE is a symbol denoting a state of an effect.

!

!

I

and:

Examples of specificrulesare

FTS ATTACH ORU PALLET1 .-_

ORU IS- ATTACHED - TO PALLET1

SPDM ACTUATE ORU TOOL1 .--*

ORU IS-ACTUATED NULL

For brevity, the NULL symbol is sometimes omitted from the specific rule if

it is known to exist in general rule to which the specific rule corresponds. For the

Organization level of the Intelligent Machine, a specific rule represents an ordered

string of primitive events which is an activity string.

2.4.4 Limitations of this representation

The chosen representation has several inherent limitations. These are:

1. It provides a very high level description of agents and actions and does not

consider many details.

2. The symbols are discrete and cannot represent continuous states of agents

(such as SPDM IS - AT X = 123.445 Y = 50.0).

3. The POE value summarizes only the success or failure of a robotic action at

achieving a desired effect.

4. The effect of a rule is limited to possessing three symbols:

(OBJ STATE OBJ).

P

Problems that need added detail or continuous states are outside the realm of this

work. Since the POE value summarizes only success or failure of a robotic action, it

does not detail how well the action was performed. For example, it cannot represent

a robotic action that _aimost succeeds_ or _nearly fails". The effectportion of

the representation is small to facilitateplanning from desired effects.If the effect

portion were large,the system might become overwhelmed at planning possiblities

using techniques likeMeans-End Analysis.

Further, we impose the followingassumptions and constraintson our system.

I. All difficultiesencountered in successfullycompleting a robotic task are due

to interrelationshipsbetween agents and actions explicitlyused to complete

the task.

2. The direct object symbol in the effectof a specificrule is the same as the

directobject symbol in the robotic action.

3. Ifthe indirectobject symbol in the effectof a specificrule isnon-NULL, then

itisthe same as the firstindirectobject symbol in the robotic action.

4. Unexpected effectsof robotic actions are not modeled by the ARM.

The firstassumption statesthatany decrease in the POE value ofa specificrule

isdue to interactionsbetween symbols explicitlystated in the rule. This indicates

that environmental influencesof other agents not stated in the specificrule have no

effecton the POE value. This isa strong assumption, but necessary ifmodeling

of agent and action interrelationshipsis to take place. Ifthis assumption was not

made, unmodeled relationshipscould effectPOE values and the ARM would not be

an effectiveand reliablepredictor.

The second and third assumptions dictateconstraintson instantiationsof the

general rules. These assumptions axe made to reduce the complexity of the ARM

model. These assumptions also reduce the number of possible instantiationsof a

robotic action given the desired effect.V_'ewillshow, however, that for many cases,

the number of possible instantiationscan be very large.

The fourth constraint statesthat only robotic actions and effectpairings that

axe instantiationsof general ruleswillbe considered in our system. This eliminates

error stat_ from planning and isconsistent with modeling only success and failure

of a robotic action by the POE value.

2.5 The ARM as a Model

The ARM is responsible for assigning POE values to robotic action/desired

effectpairings. In the preceding sections,we have formalized these pairings,and

named them specificrules. Also, it has been determined that the ARM should

produce a set of high POE robotic actions as output when provided with a desired

effectas input. Therefore, given a set of general rules,itis the responsibilityof the

ARM to

• assign a POE value to a specificrule that isthe instantiationof a general rule,

• reject any symbol combination that is not the instantiation of a general rule,

• receive as input the effect of a specific rule, and produce as output a set

of robotic actions that have a high probability of achieving the effect. It is

important that the POE value for each robotic action in the set be produced

as weU.

As detailed above, it is not likely that the POE value for each specific rule

will be available for storage. Instead, the ARM must be able to infer POE values

for untested specific rules by modeling the relationships between agents and actions,

and the effect these relationships have on POE values. When the ARM is presented

with an untested specific rule, it can use these relationships-to predict a POE value
P

for the rule. In more general terms, the ARM must be able to model the probabilistic

relationships between symbols of a known grammar.

_4

2.5.1 Training the model

Training the AlUM model develops the relationships between symbols used to

predict POE values. One training technique is to have the user explicitly encode the

known relationships between agents, actions and effects and store these relationships

in the ARM model. This method would require a sophisticated knowledge-based

system and forces the burden of relationship extraction onto the user, who must

examine all tests performed in the robotic environment to create a predictive model.

A more desirable technique is to present the ARM with a set of tests that have

been performed in the robotic environment, and have the ARM implicitlyextract

the relationshipsbetween symbols. The set of tests,calledthe training set,ca_ be

presented to the ARM in the form of specificrules.Each specificrulein the training

set must possess a POE value that indicatesthe probabilitythat the robotic action

of the specificrule achieves the desired effect.It is the responsibilityof the ARM

to extract relationships between symbols in a specific rule and determine how the

relationships effect the POE value for the rule. These predictive values can then be

applied to untested specific rules that share some of the same relationships.

Using this technique, a training _ is a collection of specific rules that have

been tested in the robotic environment, along with corresponding POE values that

dictate the probability that the robotic action of each specific rule achieved the

desired effect of the specific rule. Together, the training set of tested specific rules

and the set of general rules form a database that is provided to the ARM. This

database allows the ARM to develop predictive abilities and eliminate illegal symbol

combinations. The database block relative to the overall system is presented in

Figure 2.2.

P

O_T[ON OF MODEL

ofRobouc

A_ons

Genera/R./cs Sped_ Rntcs

Ek_ed F=m_

I

S¢_of Hi_

POE_bouc Accio_

OU_uL

Associanv¢RetailofAczions

(isfumn_E(n))

Modelof

POE valtms

forRabo.c

Acuons

(AR,_

Figure 2.2: ARM system block diagram with rule database

2.5.2 The ARM as a neural network

29

2.5.2.1 Back'propagation networks

Backpropagation networks [25]are comprised of sequential layers of simple

processing units that are arranged so that the output of one layer feeds into the

input of the next layer.Typically, these networks are used to leaxn arbitrary map-

pings from an input da:a set to a target data set. The underlying function of the

processing units and connection weights in a backpropagation network is to build

classificationregions in the input space by creatinghyperplane discriminant bound-

axies. In theory, a two level network can separate data into convex classification

regions while a three level network can develop arbitrarilycomplex regions [22].

The weights are trained using a backpropagation procedure originallydeveloped

by Werbos [26]. Recently, Williams [27] developed a new procedure for training

backpropagation networks using reinforcement learning.

When an input is provided, the trained network determines the boundaries

within which the input falls, and produces a output corresponding to that region.

Inputs that fallbetween the taught regions produce an output that isa blend of the

output of nearby classes.In this way, the output of the backpropagation network

can be somewhat continuous for nearby input values.

Applications range from classificationof input data [28,29, 30],to modeling

One class of models that isparticularlyadept at developing implicitrelation-

ships between symbols in a training set isthe artificialneural network (ANN). Each

individual ANN model, however, has itsstrengths and weaknesses and these must

be evaluated to arriveat a suitablerepresentation.Excellent discussionscomparing

differentANN models are presented in [20,21, 22, 23, 24]. The four models we

shall consider are Backpropagation networks, Grossberg ART networks, Hopfield

Networks, and Boltzmann Machines.

_u

of transferfunctions for unknown plants [31,32, 33],to topologicaltransformations

[34].Miyamoto et al. [35,36] use backpropagation networks to learn coef_cients of

the nonlinear inverse dynamics equations for a six degree of freedom ma_pulator.

Goldberg and Pearlmutter [37]supply a backpropagation network with window of

trajectorydata to learn the inversedynamics of a two degree of freedom directdrive

arm.

Day proposes a method for building an architecturein which connectionist and

standard symbolic AI implementation techniques complement each other [38].The

system allows a connectionist network to observe the internalworkings of a symbolic

AI program and thereby learn to carry out the same problem solving behavior. Day

proposes the use of a Backpropagation network to learn the AI rules.As he states,

a major problem with thisproposal is how to achieve the desired linkage between

the two systems, so the network can observe the behavior of the rules. He does

recommend the network learning be achieved by watching pre- and post-effectsof

the expert system chaining, where the pre-effectsaxe the input and post,effectsare

the desiredoutput of the network. In thispaper, Day develops a rough architecture

forthistheory.

2.5.2.2 ART networks

The ART architecture, developed by Grossberg [39, 40, 21] is a biologically

motivated dynamic network that is adept at online learning of pattern classifica-

tions and pattern completion. The model, as presented in Figure 2.3 contains a top

down classification memory (F2) and a bottom up pattern memory (F1) as part

of its attentional subsystem. Together, the two memories "resonate" as described

by nonlinear gated differential equations. In steady state, memory F1 will contain

a correct and complete input pattern and I:'2. will contain the classification of the

input pattern. The weighted connections between F1 and F2 can be modified online

j).

Osdn

Control

A_NAI.

$T.,qBSYSTEM

Dipole FieJd

STM

STM
OtJn

Conu_i i

P2

FI

T
nqPttr

Figure 2.3: ART architecture

to assign classificationsto input patterns. Some applicationsof this system axe:

modeling the timing circui;of the brain for temporal discrimination during associa-

tivelearning of rewards and punishment [41];modeling the effectsof frontallobe

damage on the classificationof objects by theirfeatures[42];and alphabet learning

[43].

2.5.2.3 Hopfield Networks

Hopfield networks [44,45] are most applicableto associativememory or op-

timization tasks. The dynamics of the Hopfield network operate to minimize the

Energy' of the network, which is a funcsion of the weights and the nodes of the

network. The Energy" isgiven by

I

where the state of node i is denoted n;, rtie {-I,1}, w;./_ _ is a real valued

weight connecting nodes i and j and N = (nl,n2,...,nk), the state of a k node

network. The network uses a gradient descent technique to alter the state of"the

nodes in order to find a localminimum Energy state,which isthe associativerecall,

or optimal value of the network.

Associative recall capabilities are discussed in [44, 45] The development of

stable memories, which axe called terminal attractors, is discussed by Zak [46] and

Hirsch [47]. It is shown in both [48] and [49] that the number of stable memories

that can be stored in a Hopfield network of r_ nodes is 0.15n.

For optimization, Hopfield and Tank have applied these networks to the Trav-

eling Salesman Problem [50], where city distances and other constraints are formu-

lated into an Energy equation, from which network weights are assigned. Using the

optimization model, Touretzky [51] has developed the DUCS architecture that pro-

vides multi-level distributed representations for frame-like concept structures. The

goal of thisresearch isto develop a powerful short term memory that can construct

and manipulate concepts rapidly. Given some slotname/slot fillervalues as cues,

DUCS can retrieve entireframes from concept memory. DUCS can also complete

frames that have empty slotvalues.

For example, given the frame

oo

AGENT: JOHN

VERB: THROW

OBJECT: z

DESTINATION: FOX

LOCATION: HOUSE

I

DUCS would retrievethe correct frame with z = ROCK.

All concepts axe stored a prioriby the user by fixingthe connection weights.

Once these weights are assigned they are fixed and the network cannot learn new

concepts. This method suffersdue to memory storage lirmtationsin the Hopfield

network and because it sometimes recallsincorrectframes, a residual effectof the

underlying optimization technique. Hinton [52]has developed similar methods for

learning concepts.

Dolan and Dyer [53]presented the CRAM system which also performs role

binding in "knowledge frames. The procedural memory iscomposed of many winner-

take allcliques.Although they propose frame learning,they do not present a tech-

nique for implementing it.

2.5.2.4 Boltzmann Machines

The Boltzmann Machine [54, 55, 56] is similar to the Hopfield network in its

use of an Energy function to associate an input pattern with an output pattern.

The Boltzmann Machine Energy function is given by

1
E(N) = -;_ _ ,_.,j,_,,j+ F.,osns (2.6)

I

|

where Oj e R is a bias term on a node being active, and wli e R. Depending on

implementation, n_ e {-1, 1} or a_ e {0, 1}.

The Boltzmann Machine derives its name from the relationship it m_ntains

between the Energy of the network state, and the probability the network settles in

that state through Simulated Annealing, which is given by a Boltzmann distribution.

Briefly put, the probability of a network state is inversely related to the Energy of

that state. Simulated Annealing [57] is used as a descent technique to find the set

of asserted nodes that minimizes the Energy (maximizes probability). These nodes

correspond to the correct output of the network for the provided input.

Unlike Hopfield networks, Boltzmann machines also contain "hidden" nodes

that are used to represent higher order relationships between input and output

nodes. The purpose of these hidden nodes is similar to the middle layer nodes

in a backpropagation network. Also, like backpropagation networks, Boltzmann

machines can be trained on test data to associate input and output values.

Boltzma_m Machines have been used for figure-ground separation in computer

vision [$8], combinatorial optimization [.59], problems and knowledge frame recall

[60]. Pearl [61, 62] has shown equivalence between belief networks and Boltzmann

Machines. However, nodes in belief networks must represent propositions, and do

not represent individual variables [63].

Touretzky and Hinton [64] use a distributed Boltzmann Machine architecture

to represent two types of production systems. The first system contains rules that

consist of pairs of working memory triples for the rule condition, and an arbitrary

set of triples that must be added to or deleted from working memory as the rule

effect. Typical rules are of the form

- Rule-l: (F A A)(F B B) = +(G A B)-(F A A)-(F B B)

The second production system issimilar,but allows variable matching in the con-

dition part of a rule. For example,

dO

Rule-2: (x A B) (x C D) _ ÷(P D Q) -(R S T)

where z is a variable to be matched by working memory elements.

The weights of the network are fixed by the user. These weights are used to

represent the rules and working memory elements. Good results are obtained with

a working memory alphabet size of 25 symbols, a set of about six rules, and six

elements in working memory at a time.

2.5.3 Choice of an ANN model for the ARM

Based on the various ANN models presented above, the Boltzmann Machine

seems to come closest to the capabilities required by the ARM. The Boltzmann

Machine allows for higher order relationships between input and output pairs, which

is necessary for the modeling of robotic actions and effects. Using a Boltzmann

Machine, it should be possible to associate effects of specific rules (input) with their

actions (output). Also, it should be possible to store the POE of a specific rule as

a function of the Energy of the network _vhen the specific rule is asserted on the

network nodes. Searching the network for a minimum Energy state using Simulated

Annealing, or another optimization technique can be used to produce the robotic

action that has the highest probability of achieving a given desired effect. Finally,

if a suitable architecture is chosen, the general rules could also be stored.

2.6 Recall of Robotic Actions

The ARM must be able to recalla high POE robotic action given a desired

effectas input. Recall requires performing a search on the ARM model. Chapter

4 will discuss how the search of the ARM model involves the minimization of a

highly nonlinear, discrete function. This precludes the use of linearoptimization

techniques such as gradient descent, conjugate gradient,linearprogramming, and

others [65].

Three techniques that are useful for optimizing nonlinear, discrete functions

are Random Search, Simulated Annealing, and the Genetic Algorithm. Each will

be quickly reviewed here, with a more detailed presentation given in Chapter 4.

Random Search [66, 67] selects random members from the space of candidate

solutions, updating the current best choice whenever a member is found that is

better than all previous members. This technique has been shown to converge in

probability to the optimum of a given cost function over a solution space. Random

Search can be quite slow, however, since it does not exploit inherent knowledge of

the structure of the solution space.

Simulated Annealing [57] is similar to gradient descent, though it allows oc-

casional uphill steps in the cost function. The uphill steps allow the search to

avoid entrapment in local extrema. Simulated Annealing has been widely used with

Boltzmann Machines [55, 58, 39] due to the nature of the machine's cost function.

Recently, Simulated Annealing has been parallelized to reduce search time. Exam-

ples of parallel Simulated Annealing are presented in [59, 68].

Simulated Annealing can proceed quite slowly if convergence to the cost opti-

mum is required [69]. No convergence proof has been given for parallel Simulated

Annealing. Also, like Random Search, Simulated Annealing does not possess or

develop any knowledge of the underlying structure of the cost function that is being

optimized.

The Genetic Algorithm (GA) [70] is a third optimization technique suitable to

highly nonlinear, discrete search spaces. Unlike Random Search and Simulated An-

nealing, the GA maintains a population of search points. In most GA applications,

the search point is represented by a binary string. Using a genetic analogy, new

sea.tch points are created through the selection and combination of current popula-

tion members. The G A has been shown to promote high performing, short-order

substrings, called "schema." The schema develop an implicit representation of the

problem space while searching for the optimum value. An excellent discussion and

review of Genetic Algorithms is presented in [71].

Genetic algorithms have been used in many optimization tasks. Original work

on function optimization was done by De,Jong [72]. Davis has used the GA for both

job shop scheduling problems [73] as well as graph coloring problems [74]. Glover

['/'5] uses the GA to optimize the configuration of a computer keyboard.

A large amount of research has been done to make the GA more efficient.

Baker [76] discusses population sampling techniques and develops one that is shown

to have no bias and minimum spread. Grefenstette and Baker [77] examine the

effect of fitness assignment on sampling rate in view of implicit parallelism and axe

able to generalize the Schema Theorem [70] to other fitness assignment functions.

Goldberg [78] examines optimal sizing of GA populations for parallel and serial

populations. In this work, Goldberg develops a figure of merit that describes the

amount of useful schema processing in a GA. Eshelman et al. [79] examine positional

and distributional biases for different crossover techniques. Many researchers have

experimented with parallel GAs [80, 81, 82, 83, 84, 85].

The strength of the GA is that it develops an implicit understanding of the

underlying structure of a given cost function through the propagation of short-order

schema. By using semantic encodings of symbols into short binary strings, it is

possible to accelerate the search procedure for a given problem [86]. Unfortunately,

the GA often prematurely converges to a local e×tremea of a cost function. This

will be further discussed in Chapter 4.

2.7 Conclusions

- This chapter detailed the target world for our system, which is composed of

many robotic agents and actions. It was stated that in our target world, many

robotic actions can achieve the same eff_.ct. As shown by the review of automatic

i

!

38

planning systems, this redundancy leads to dii_culty in planning, due to the size of

the search space of possible actions.

To reduce the search space, an evaluation function calledthe Associative Rule

Memory isproposed, that storesand predicts the probabilitythat a robotic action

achieves a desired effect.A grammar isprovided to interfacethe ARM with inter-

active users or automatic planning systems, and an implicit training methodology

isrecommended.

Different artificialneural network models have been as a possible basis for

the ARM. The Boltzmann Machine was determined to satisfymost of our needs,

but itmust be specializedto fitthe ARM. To allow the ARM to produce a high

POE robotic action,given a desired effect,optimization techniques were examined.

The common characteristicof these techniques was the abilityto optimize a highly

nonlinear,discretefunction.

i

1

CHAPTER 3

DESIGN OF THE ASSOCIATIVE RULE MEMORY

\

The previous chapter described the structure of the specific and general rules that

are used in planning. The general rules and training set combine to form a database

of "knowledge that describe robotic actions that are possible, and actions that have

been explicitly tested. Since the number of possible robotic actions may be quite

large in an environment with many agents, it is reasonable to assume that the specific

rules in this database encompass only a small percentage of possible actions. Since

the daZabase by itself is unable to provide probability of effect values for untested

specific rules, it is only effective in planning sequences in which all required actions

are present in the tested specificrulesof the trainingset. This forms a rather small

subset of possible plans.

It would be extremely usefulifa mechanism or model existed to examine the

tested specificrules and the general rules and use the probability of effectvalues

o infer the agents th perform well together, and agents that do not. Such a

mechanism could be used to determine probability of effect values for an untested

specific rule by examining the set of agents present in the rule. Agents that together

perform poorly would subtract from the POE value while other, more compatible

agents would add to the POE. If we combine these POE changes with a default

probability value (which represents the nominal probability of an untested specific

rule), the POE for a particular untested specific rule could be determined.

Given that we know POE values for specific rules in the training set, and

can somehow infer POE values for untested ones, it would greatly aid the planning

process if the model could be provided with a desired effect as input and produce as

output a set of robotic actions that have a high probability of achieving this desired

effect along with the POE values. The user or automatic planner could then use the

39

4O

model interactively to construct a sequence of highly probable robotic actions that

achieve a final goal.

For example, providing the model with

PALLET - L IS - ATTACHED - TO TRUSS

the model should respond with

FTS FIXTURE PALLET-L TRUSS

SPDM ATTACH PALLET-L TRUSS

if the specific rules

and

FTS FIXTURE PALLET-L TRUSS

PALLET - L IS - ATTACHED - TO TRUSS

POE : 0.97

POE : 0.95

SPDM ATTACH PALLET-L TRUSS -,

POE : 0.97

PALLET - I_ IS- ATTACHED - TO TRUSS POE :0.95

exist in the model and possess the highest POE values. It is important that the

technique used by the model be efficientin finding these sets of actions, since the

search space of possible actions may be quite large.

Given these requirements, thischapter describesthe design of the Associative

Rule Memory. The function of she ARM is to:

1. Store tested specificrulesand POE values.

27.Store general rules.

3. Provide predictivevalues for untested specificrules.

!

4. Given a desired effectas input, produce as output the robotic action that has

the highest POE value forthe effect,or a setof robotic actions,each possessing

a high POE value for the effect.

This chapter focuses on items I-3 in the above list,and forms the Asso-

ciativeRule Memory block in Figure 2.1. while item 4 is examined in depth in

Chapter 4. The outline of the chapter isas follows. Section 3.1 deta£1sthe Boltz-

mann Machine, which isthe neural network model used by the ARM. Section 3.2

maps the architecture of the ARM onto a Boltzmann Machine and examines the

issues of input/output, representation of specificand general rules, and general-

ization/prediction.Section 3.3 develops a technique for training the ARM that is

guaranteed to find the optimal set of weights for the given training set. Comparison

ismade to techniques used by other researchersfor training Boltzmann Machines.

Also, representation of higher order relationshipsbetween agents isdiscussed, along

with a retrainingprocedure to encompass these relationshipsin the ARM. Examples

and resultsof training using tb.lsprocedure are presented in section 3.4. Section 3.3

examines the use of the ARM for prediction of POE values for untested specific

rules.In section 3.6,extensions to the basic ARM model are presented. Section 3.7

summarizes the model and concludes thischapter.

3.1 A Description of the Boltzmann Machine Model

Before it is possible to understand how the ARM can be modeled by a Boltz-

mann Machine, it is necessary to develop a clear understanding of the Boltzmann

Machine model. With this consideration, this section presents the fundamentals of

the "generic" Boltzmann Machine model.

The Boltzmann Machine, as discussed in the previous chapter, is a constraint

satisfaction network that'is capable of learning underlying constraints that charac-

terize a domain by simply being shown examples from the domain. The Machine,

42

a network of nodes and connections, builds an internal model of the domain by

modifying the connection values,or weights in accordance with the examples it is

presented.

Let the nodes of the generic Machine take values nl _ {0, 1}. The weighted

connection between a node pair represents a weak constraint between the nodes,

given by a real-valuednumber wi.¢e _. As the weight increasesin value between

two nodes, the nodes tend to inhibiteach other,i.e.both nodes willtend not to be

of value I at the same time. This relationshipismathematically given by an energy

equation, that represents the totalamount of inhibitionin the network for a given

configuration

I

E(N) = _ _ __, wiin,ni + _ Osni (3.1)

As this equation reflects, each node also has a bias associated with it (6j)

that encourages or discourages a node from assuming the value I. The equation

alsodemonstrates the idea of inhibition;as more inhibitorynode pairs axe asserted,

the energy value E(N)increases. In effect,the inhibitionsform a set of weak

constraintsbetween pairsof assertednodes and the energy value dictatesthe amount

of constraint violation.It isimportant to note that the weights between nodes are

bidirectional, i.e., wi._ = wj_.

The nodes of the network axe divided into three sets: Input nodes, Output

nodes and Hidden nodes. After fixing the node values for the input nodes, the

function of the network is to find the state of the hidden and output nodes that

minimizes the total inhibition, or energy of the system. The output node value at

minimum energy state is the best associative recall for the given input.

" The hidden nodes of the network are used to represent complex, higher order

relationships between input and output nodes. Hidden nodes axe required for the

network to learn such functions as XOR or PARITY, which cannot be represented

n

!

43

by simple first order connec:ions between input and output nodes.

The generic Boltzrnann Machine uses Simulated Annealing as the optimiza-

tion technique for finding the minimum energy state of the Mar..hine. The actual

Simulated Annealing algorithm is presented in the next chapter. It is suf_cient to

detail here, that the probability of finding the system in any global state alter an-

healing obeys a Boltzmann distribution. In other words, after annealing, the relative

probability of two global states is given by

P(N._) elE(y_)_E(r,r,))
P(N_) = (3.2)

where Nx is the state of the network given by Nx = (nf, r_,..., n_) for an m node

network.

Therefore, the probability that the network assumes a particular node config-

uration 3' during annealing is given by

P(N.,) -- ec'-EcN') (3.3)

where a is a probability normalizing constant.

A difficult and slow training procedure is used to develop the weights of the

generic Machine. The thrust of this procedure is to equalize the probability dis-

tribution of input/output examples from the environment with the free running

distribution of the network under the annea2ing process. This is summarized by the

cost measure

G = P(v,)tnP(v.)
P,(v,) (3.4)

"7

where P(V_) is the probability that the visible nodes (i.e., input and output nodes)

are in state 3' when their states axe determined by the input/output pairings and

P'(V"7) is the corresponding probability when the network is free running under

44

Simulated Anne.aJing. The weights can be changed to minimize the cost measure

Mong the gradient

aG

aw -"7= (pij-p j) (3.5)

where iD_jis the average probabilityof two nodes both being in state I when the

state of the visible(input/output) units are fixed by the training set data, and p_j

is the corresponding probabilitywhen the visiblenodes axe allowed to be changed

by the Annealing process.

This gradient descent technique does not make any assumptions about the

use of the hidden nodes, and allows the network to develop its own internal rep-

r_mntation. The technique also does not restrictvalues of input/output pairings.

Therefore, the training technique isvery general.

However, these two features also make this training technique difficultand

slow. At each gradient step, the algorithm requires an annealing process to deter-

mine the probabilityof nodes being assertedwhen the network isfreerunning. This

ta-kestime. Also, the gradient technique on an arbitrary network may allow the

weights to settleinto a local minimum representation,in which the gradient is 0

but the error isstillsignificant.If thisoccurs, retrainingisnecessary to obtain the

global minimum.

Overall, the strength of the Boltzmann _Machine for use in the ARM model

isitsabilityto associateinput/output pairs,and maintain an energy value relating

these pairs.Using the Boltzmann distribution,itispossible to relatethe energy to

a POE value. Also, the Boltzmann Machine contains hidden nodes for representing

higher order relationships.However, the weakness of the Boltzmann machine isthat

the training technique provided is slow and difficult,especiallyfor laxge numbers

of input/output pairings. Using the constraintsof theARM, however, it may be

possible to develop a specialcase of this Machine that requiresa simpler training

!

, 45

technique.

a.2 Mapping the ARM onto a Boltzmann Machine

Given the description of the generic Boltzmann Machine, it is now possible to

specialize this network model to fit the design criteria for the ARM. In particular,

we must detail the following features:

1. The mapping of specific rules onto nodes such that the network can receive a

desired effect as input, and produce a set of robotic actions as output.

2. The relationship between connection weights and the POE value.

3. The topology of connection weights.

4. The mapping of general rules onto the network.

S. Higher order, hidden nodes.

3.2.1 Specific rules and network nodes

The previously described, the grammar of the specific rules is of the form

ACTOR ACTION RECOBJ -.

OBJ STATE OBJ

To allow the network to receive a desired effect as input, there must exist a

set of nodes that can be asserted at the same time to represent each of the symbols

of the desired effect. Similarly, to produce a robotic action as output, the network

must possess sets of nodes that can represent each symbol of the _optimal" robotic

ac_on simultaneously.

To this end, we can design a network that contains three input levels and

rn + 2 output levels, where m is the number of object levels in the network. The

input levels are

46

• OBJI

• STATE

• OBJ2

In a similarfashion,the output levels_e

• ACTOR

• ACTION

• OBJ,

• OBJ2

• OBJ.

Each level (input or output) must contain sufficient nodes so that the levet

ca= represent any of the symbols corresponding to agents of that levels class. For

example, if the world consists of four possible actors FTS, SPDM, JRMS, and

MT, there must be a sufficient number of nodes in the ACTOR level of the network

to represent each of these four symbols. The class of a/lowable symbols for each

object level is describea by the general rules for a particular implementation.

There are two extremes to the symbol representation issue. One extreme maps

each symbol to an individual node. This method creates a topology" that is easy

to understand; i.e., the user can determine the relationships between symbols by

examining the weighted connections between their representative nodes. However,

since this representation dictates one node per symbol, it can lead to large network

sizes, and can therefore be expensive, both in terms of storage and computation.

In the example above, four nodes would be required to represent the four different

actors.

am

I

!

i 47

The other extreme is a distributed representation, where a symbol is repre-

sented by a pattern of activity of nodes. An example of a distributed representation

is a binary encoding of symbols such that 2_ symbols can be represented in n nodes.

In the example above, only 2 nodes would be required to represent the four ac-

tor's. Distributed representations, therefore, are more efficient in term of storage

requirements. Distributed representations can also be more fault tolerant if they

sacrifice some representational capacity, as demonstrated by the Hopfield network

in section 2.5.2.3. If a particular connection or node fails, it may be possible to pro-

vide an approximate representation of the symbol. On the negative side, distributed

representations may lead to a network that is difficult to train and understand. By

themselves, the weighted connections between nodes do not provide much structural

information about the relationships between the symbols that the nodes represent.

The choice made for representation in the ARM is for a simple one-to-one

symbol to node mapping. Although more expensive in terms of storage, our main

concern is to extract and understand the relationships between symbols (or agents),

so that these relationships can be exploited in planning. Also, since this is a software

simulated network, we are less concerned with issues of fault tolerance.

Therefore, for each node level of the ARM, there is one node for the symbol

of each agent that belongs to the class of that node level. An example of this is

presented in Figure 3.1. The top half of the figure displays the nodes levels for the

desired effect, or input nodes. The bottom half of the figure displays the node levels

for the robotic action, or output of the network. The node labels are the symbols

for the agents of a particular world model.

Given this network structure, a specific rule is said to be asserted on the
F

network when each node in the robotic action part of the network is assigned the

value 1 if it represents a symbol in the robotic action part of the rule. Also, each

node in the effect part of the network is a._signed the value 1 if it represents a symbol

48 •

OBJ 1

s'rA'rE

OB] S

ACTOR

ACrLON

OB] l

OBJ 3,

OBI 3

0
0RU

0
IS_AT

0
T0CI.S_TI

0
MSC

0 0 0 0
TRUSS PAl/2rl AWl> CARRmRI

© ©
IS_A'iTAt_Do'ro __ACI'I/ATI_

0 0 0 i
TOOLSL='I'/ l'Aii_4. PAIJ_-M

0 0 0 0 0 0
Frs $PDM SSRMS EVA _ M'r

0 0 0 0 0
A'rrACH ACru'A'r_ _ l:_srrioN

0 0 0 0 0 0]
ORU MSC TRUSS p_ AW? _I

0 0 0 0
TOOLSL_I TOOL_ET2 P_-L PAI/2F-M

0 0 0 0 0 0
SPDM SSRMS EVA .rRMS

Figure 3.1: Diagraxn of nodes fora typic/ARM network l

I

49

in the effect part of the specific rule. All other nodes are assigned the value 0. For

example, the specific rule

FTS ACTUATE TRUSS TOOLSETI JRMS -,

TRUSS IS- ACTUATED

is asserted on the network presented in Figure 3.2. The shaded nodes represent

asserted, or 1 valued nodes, and the blank nodes represent unasserted, or 0 valued

nodes.

3.2.2 Connection weights and the POE value

The connection weights form a set ofweak constraintsbetween pairsof asserted

nodes. These weak constraints are combined into an energy function (3.1),that

provides an overallindication of the amount of inhibitionfor a particular network

configuration. A relationshipexistsbetween the energy of a configuration and the

probability that the network assumes a particularconfiguration as shown by (3.2,

3.4) This relationshipisgiven by a Boltzmann distribution.Using thisinformation,

we can relatethe probabilityof effectvalue to the connection weights.

A simple technique for storing the POE value isto make ita function of the

probabilityof a network configuration.In thisway, the POE would be a simple func-

tion of the node configurations,and the weights of the network. A straightforward

model is

POE(N) = kP(N) = ke °-_:(N) (3.7)

ff we select k such that

we see that

k : e-" (3.8)

POE(N) = e-E(N) (3.9)

50

OBJ I

STMf'E

OB_ S

0 0 @ 0
ORU MSC T_US_ P_

0 0
IS_AT IS_ATTAI_-IED_TO

0 0 0
TOOt -_1 TOOr.,_E'_

0
AWP

0

@
IS_ACTUA'r_D

0
P_-L PALLET-M

i

Robo=c .=,.¢==a(O==puz)

ACTOR,

ACTION

FTS

0 0 0
SPDM SSRMS EVA

0 @ 0
ATTACH ACTUATE

o,,_ 0 0 @ 0
ORU MSC TRUSS P_l

OBJ 2 ® 0 0
TOOLSETI TOOLSET2 P.aJ.Z.L=T-L

O O
Ii¢M3 MT

00
POSITION TRANSPORT

O O
AWP _!

O
PA.LLET.M

o_,_ 0 0 0 0 @ 0
FTS SPDM SSRMS EVA JR,MS MY

Figure 3.2: Diagram of asserted nodes for a typlca2 ARM network

i 51

Therefore, the POE of a specific rule is exponentially related to the negative sum of

the weights for the asserted nodes of the rule. We assume that the bias terms Oj -

O, since the POE value should only be aHected by relationships between node pairs.

It is clear that as the weight between two nodes in a specific rule increases

(increased inhibition), the POE value for the specific rule decreases. Similarly,

decreasing a connection weight increases the POE value. To insure that the POE

value never exceeds 1.0, we must restrict the weights of the network such that

(WVj)wq > 0

This forces the energy value to be positive for all configurations and bounds the

POE values by 1.0.

3.2.3 The topology of connection weights

In the generic Boltzmann Machine, allnodes axe connected to each other by

bidirectionalweights. Due to the nature of the AR/Vl, such a strongly connected

topology isnot necessary. To show this,letus restateone basic assumption that is

made in section 2.4.4.

This system assumes that any and all difficulties encountered in suc-

cessfully completing a robotic task are due to interrelationships between

agents and actions explicitly used to complete the task.

This assumption dictates that if a specific rule has a POE value less than 1.0

(complete certainty), then an inhibitory, relationship exists between symbols in the

robotic action, and symbols in the effect of that action. In other words, some subset
P

or combination of ACTOR, ACTION, and OBJ_ symbols in the robotic action do

not allow the effect of the action to occur with complete certainty. More directly,

the symbols of the robotic action place constraints on the symbols representing the

52

effect of the action. This assumption, therefore, provides the ARM with a topological

connection constraint.

The assumption dictates that inhibition is produced when a robotic action

has di_culty achieving its effect, therefore connections must exist between nodes in

the robotic action part of the network, and nodes in the effect part of the network.

Ignoring higher order _hidden" nodes for the moment, this indicates that connections

exist between the output and input nodes of the network.

It may be argued that in some cases, certain symbols in the robotic action

part of a specific rule perform poorly together, and there should also be inhibitory

connections between nodes in this part of the network. This argument is faulty.

In actuality, poor performance occurs when symbols in the robotic action are used

together to achieve a particular _ffec_. Although higher order nodes may be required

to represent a combination of robotic action symbols, the interaction and inhibition

is stillbetween robotic action nodes and the e,_ec,nodes, an! not between the

roboticactionnodes themselves. A more detaileddiscussionof higher order "hidden"

nodes ispresented in section3.3.2ofthischapter. Fi_o-ure3.3 shows a sample network

with weighted connections between robotic action nodes and effectnodes. The

connections with largerweights indicatesymbol pairsthat perform poorly together,

and require increased inhibitionto decrease the POE value. For example, suppose

we assertthe specificrule N-,

FTS ACTUATE TRUSS TOOLSETI JRMS --,

TRUSS IS-ACTUATED

on the network and compute the energy (3.1) assuming each node bias equals 0

(Vj 8j = 0) and we find that E(N-,) = 0.340 that gives POE(N.,) = 0.712. This

indicates that the robotic action given by the above specific rule has a 71.2 percent

chance of successfully achieving the effect of the specific rule.

!

53

Etf=z(Imp)

OBJ I

STATE

OBI S

ACTOR

ACTION

OBJ I

OB_ 2

FI3

v

©

.tO 0

TOOLS'ETI TOOLSET _- P._..L.ET-L

o.,_ \0 0 0 0 ® 0
SPDM $SR.MS EVA /R.MS MT

©

Figure 3.3: Diagram of nodes snd connections for a typic.d ARM network

54

3.2.4 General rules and the ARM

As statedin the previous chapter, the purpose ofthe general rulesisto provide

a framework for possible actions. Any specificrule that is an instantiationof a

general rule isa valid robotic action]effectpair. On the other hand, a specificrule

isinvalidifitdoes not fitthe structure of any general rule.

The general rulesshould accomplish the following,when included in the ARM.

i. The ARM should produce very low POE values for any asserted specificrule

that violatesa general rule.

2. Given a desired effectas input, the ARM should never produce, as output,

any robotic action that violatesa general rule.

In fact,these constraintsa:e strongly related. By item I, ifa set of asserted

nodes violatesa general rule,itshould produce a low POE value. Since the AR.M

outl)uts the robotic actions with the highest POE values for a given desired effect,

itshould never recallone of these low POE combinations. Therefore, item 2 follows

directlyfrom item i.

To determine how general rulesshould be mapped onto the network, we must

examine the grammar ofthe rules.The descriptionofthe general rulegrammar (2.3)

statesthat each ACTION symbol of a general ruleisassociatedwith a certainclass

of ACTOR symbols and certain classesof OBJ= symbols for each object levelz.

These classesrepresent the valid agents that can be used to perform ACTION in

the realworld. Therefore, symbols belonging to classesthat are not associated with

a particularACTION symbol should be inhibitedwhen that ACTION isasserted.

.- Another feature of the rule grammar isthat the STATE symbol of a robotic

effectcan be caused by one or more ACTION symbols. For example, the system

can contain two general rules

< martip > F[XUTRE < obj > < obj > .--*

1

b |

55

and

.< obj > IS-ATTACHED-TO < obj >

< rnanip > ATTACH < obj > < obj > --.*

< obj > IS-ATTACHED-TO < obj >

As shown, both rules have the same STATE symbol but possess different ACTION

symbols. Inhibition should be present between ACTION symbols and STATE

symbols that do not occur together in general rules.

One assumption that we make is that the user will never assert a set of input

nodes that cannot be generated from a robotic action. This is not a very binding

constraint, but puts the burden of input consistency on the user. With the burden

shifted to the user, the ARM does not need inhibition between sets of input symbol

classes and the STATE symbols.

The symbol constraints detailed above can be mapped directly onto the ARM

network in the following manner.

1. For each ACTION symbol, create a connection with large weight (inhibitory

connection) between the ACTION node and each ACTOR and OBJ:_ node

whose symbol does not belong to the class of allowable symbols for that

ACTION.

2. For each STATE symbol, create a connection with large weight between the

STATE node and each ACTION node whose symbol does not belong to the

class of allowable symbols for that STATE.

Making these connections will inhibit asserting any ACTION node that does

not:correspond to the STATE in the input nodes, and also'inhibit asserting invalid

agent nodes given a valid asserted ACTION node.

For example, consider the general rule

< manipulator > ACTUATE < object > < tool > ---.

56

< object > IS- ACTUATED NULL

Let us assume this is the only general rule in the system that contains the action

ACTUATE or the state IS- ACTUATED. To map this onto the network in

Figure 3.1, we would need the following inhibitory connections:

1. Connections between ACTUATE and all ACTOR nodes that axe not of class

< manipulator >.

2. Connections between ACTUATE and all OBJ1 nodes that are not of the class

< object >.

3. Connections between ACTUATE and all OBJ2 nodes that are not of the class

< tool >.

4. Connections between ACTUATE and all OBJa nodes, since the rule does not

allow for more than two OBJ in the robotic action.

5. Connections between IS - ACTUATED and all ACTION nodes except the

ACTUATE node.

This is shown in Figure 3.4, where the solid lines represent inhibitory connections.

Another method that achieves the same result is to initially set all connections to

1, and then remove those that are allowed by general rules.

3.2.5 Higher order nodes

Higher order, or "hidden" nodes are required by the AB.M to represent re-

lationships that cannot be mapped onto first order symbol nodes. For example,

if t'he FTS has a difficult time achieving the state IS - ATTACHED - TO,

this represents a first order relationship between the agent FTS and the state

IS-ATTACHED- TO. This first order relationship is maintained in the network

by a weighted connection between the two corresponding nodes. Now, consider the

|

57

o_,, 0 0 0 0 0 0
ORff _C _U_ PALL_I AWP _I

QBJ S 0

OBJ !

OBJ 2

OBI 3

Figure 3.4: Diagram of general rule inhibitions for a typicM ARM network

58

case of the FTS having a hard time acldeving the state IS - ATTACHED - TO

when trying to attach to PALLET - L. This presents a higher order relationship

where FTS + PALLET - L together inhibit IS - ATTACHED - TO. A second

order node is required to represent the combination FTS + PALLET - L and a

weighted connection is made from this node to the IS- ATTACHED - TO node.

It is possible to have third, fourth, ..., nth order nodes if necessaxy.

The generic Boltzma_un Machine allows the provided hidden nodes to develop

the required higher order relationships through its training procedure. Through this

training, the hidden nodes can implicitly assume representations needed by the net-

work to accurately represent the training set. Only a small number of hidden nodes

are generally needed to develop the representation using this technique; however,

the savings in storage is paid for by a very difficult and slow training that is not

guara_uteed to find a correct representation for the training set [55].

To insure accurate representation of the POE values for specific rules, and to

simplify the training technique, the ARM uses higher order nodes that ex'plicitly rep-

resent the combination of sy'mbols. Symbol nodes, such as FTS + PALLET - L,

will be added to the network by the training procedure when higher order relar.ion-

ships are detected. This procedure will be described later in the chapter. When

computing POE values for specific rules, a higher order node in the ARM network

is automaticalJy asserted when the symbols it represents are asserted on the first

order nodes. An example of higher order node_ is presented in Figure 3.5

It is important to note that the higher order nodes will only be required for

symbols in the robotic action part of the specific rule. This is because it is the

combination of agents in the robotic action that may have dil_culty in achieving

a stated effect.This method will,however, require more higher order nodes than

needed by the originaltraining technique.

!

59

OBJ I

STATE

OBI $

0 0 0 0 0
ORU MSC TRUS._ PALLEFI AWP

© 0 0
/S_AT IS_ATTACHED_TO IS_ACTUA'I"ED

0 0 0 0
TOOLEETI TOOLSE'T'2 PALLET-L PAL/.ET-M

Ro_Uc A_on (C_i_)

,_o_ 0 0 O 0 0 0
F_ SPDM SSRMS EVA _ MT

,_o_ 0 0 0 0 0
ATTACH ACTUATE FIXTURE POSITION _K'I'

o,,, 0 0 0 0 0 0
ORU MSC TRUSS PALLET'I AWP _I

o._ 0 0 0 0
TOOLS_I T_LS'E'_. P,_,.LET-L PAL/.,.L=T_4

o_,_ 0 0 0 0 0 0
FTS SPDM SSRMS EVA /R2vIS MT

2rid Ore ,°- ,-- o. ,-. ,-. ,-.
', | ', l ,"] '] , | ']NodP._ -" - - "- - . -
FTS ATTACH AWP FTS AWP _:JDM

ORU TRUSS TOOLSETI AWP PALLET-L FIXT_'P,.E

Figure 3.5: Diagram of" higher order nodes for a. typicz/AP,.M network

60

3.3 Training the ARM

The previous section gave a general sense of how weights in the network should

be allocated to store the POE value. Agents that do not work well in achieving an

effect should correspond to nodes that have high weight values between them. The

high weight values increase the energy value for the configuration, which in turn

decreases the POE _lue of the configuration. An algorithm must be developed to

formalize this concept. In other words, given an initial training set of tested specific

rules, the network must adopt weight values to reflect the performance of the agents

at their task, and correctly represent their known POE values.

Training the network can be a difficult procedure. The training technique used

must overcome the following problems.

1. The POE of each tested rule must be stored with a defined degree of accuracy.

2. Since tested specific rules often contain overlapping subsets of symbols, the

rules also share the same connections in the ARM network. Altering one

connection weight to more accurately represent the POE of a particular tested

specific rule may lead to less accurate representations for other specific rules

in the training set. The training technique must possess a method for altering

weights that can overcome this difficulty.

3. From any initial state of the network, o._,;_....,.., a par;icular training set, the train-

ing algorithm must always converge to the same set of weights. This require-

ment stipulates that the relationships between symbols for a given training

set always map to the same weight representation. Thus, the requirement

prevents multiple solutions from occurring.

4. Higher order relationships between symbols must be discovered, corresponding

nodes must be added, and weights must be correctly trained. If unnecessary

higher order nodes are created, they must be pruned.

1

II

!

61

Since the ARM isa Boltzmaan Machine specializedin both connection topol-

ogy and higher order node structure,it is possibleto develop a training technique

that isnot as complicated as the originalmethod designed forthe generic Boltzmann

Machines. The technique chosen is to minimize the sum-squared distance between

the energy of the ARM when a tested specificruleisasserted on the nodes and the

energy va/ue of the tested specificrule provided by the trainingset.

Let

• POEt(N.,) be the POE value for a tested specificrule 7, as provided by the

trainingset.

. E,(N.,) = -In(POEt(N.,)). This is the energy value to be stored in the

network for specificrule 7, as given by (3.8).

• E(N.,) be the energy of specificrule 7 when assertedon the network.

For a network with only firstorder nodes, we know that

1

wijn i nj (3.10)

where N_ = (n_, n_,..., n_) for an m node network, the state of node/c for training

set rule 7 is n_ e {0, 1}, and i and j index the first order nodes in the network

(assuming 0 bias).

Let us define

G = E{E(N,) - E,(N,)} 2 + al E E w_ (3.11)
", i j

G isa cost function that represents the sum squared error between the asserted

and'desired energy value of a testedspecificrule.By selectingan appropriate al and

minimizing G, the energy differencewillapproach 0 for allrules in the training set.

When thisoccurs, the POE of alltestedspecificruleswillbe accurately represented

by the network.

62

We can show that the function G isstrictlyconvex. IfG isstrictlyconvex,

itpossesses a singleminimum value; i.e.,minimJ:_ng G willproduce only one so-

lution. Therefore, the relationshipsbetween symbols for a given tr_ning set will

always map to the same weight representation.Also, a strictlyconvex function over

a convex space contains no localminima except the globalminimum. IfG isstrictly

convex, a simple technique can be used to find itsminimum value.

Theorem 3.1: G isstrictlyconvex.

Proof:

Let

W ,..

_11

IJJ12

W21

_Umm

(3.12)

This is the column vector representation of the weight matrix.

"V "f

r_.lrtI

•,f ,_

r1171 2

S.., = (3.13)

_.2_1

_ml'lm

This isthe column vector representationof the node pairsfor the testedspecificrule

7. We can see that

63

and we know that

Therefore,

for all W. If"we let

then

wTs_ > 0 (3.15)

(wZs_)_ T T= W S_S_ W > 0 (3.16)

s= E s_s_ (3.1T)

_(E _'"""""'_-,,, ,.,, = wTr'w ->o (3.1s)

By (3.18)the matrix S ispositivesemi-definiteover a convex space defined on W.

IfW ¢ [0],we can see that

c_W:rW = WT(cqI)W > 0 (3.19)

where I isthe identitymatrix and al > 0. Therefore,

WT(_ + mI)W > 0 (3.20)

which indicates that _ + alI is positive definite over a convex space defined on W.

It is known that a function possessing a positive definite Hessian matrix is

strictly convex. Since _ +alI is the Hessian of G, G is strictly convex over a convex

space defined on W. Therefore, G possesses a single minimum.

Q.E.D..

It is also known that a positive definitefunction possesses no local optima

except for the global minimum. The minimum of (7 can thereforebe found using a

simple gradient search technique. Itmay be possibleto use an acceleratedtechnique

such as constrained conjugate gradient to findthe minimum. One must be careful,

however, to insure that the acceleratedtechnique doesn't requireinversion of the

matrix, since it isvery large. Using an activecontraint technique may work well

|
64

if combined with a unconstrained search method, since the constraint matrix may

often be singular.

The gradient of (7 with respect to the weights can be expressed as

O(7

= 2 - + (3.21)
*Y

subject to w+j _> 0. The minimum of G can be found numerically by iteratingon

a(7
wij = wij - _-- (3.22)

0w+ i

for all weights w_j, and a small positive step size e. The correct weights axe found

as all the partial derivatives approach O.

3.3.1 Training higher order nodes

' '_iterm in (3.11)a.llowsthe function G to be strictlyconvex, instead of

con.vex,and thereby insuresa singlesolution.The term affectsthe weights by forcing

weight values to be as small as possible without greatly disturbing the difference

between the asserted and desiredenergy fora specifictested rule. We willcaLlthis

term a "forcing function."

We have stated that equation (3.11) applies to training a network with only

first order nodes. If second order nodes are included in training, (3.11) must be

modified to

a-- _':+{E(N.,)-Et(N.r)}2 +a,E_'_+w_j+a2_":+_'_+w_h (3.23)
-_ i j i h

where i, j denote first order nodes and h denotes second order nodes. The gradient

for the second order connections is

OG
- Et(N.r)}ni n# + 2a2wo, (3.24)

Ow_j .,

for second order connections. The gradient in (3.21) is still correct for connections

between first order nodes.

65

In (3.23), the term

Z: E (3.2s)
j

is used to minimize the weights between first order nodes. For this term, the indices

{ and j index first order nodes only. Similarly, the term

_2 _ _ w,_ (3.26)

is used to minimize the weights between second order nodes and first order nodes.

For this term, the index h represents higher order nodes. It is important to remember

that the higher order nodes only appear on the robotic action side of the ARM, and

connect to effect nodes on the input side of the network.

There is a purpose for separating the weight forcing function into two parts

(3.25; 3.26). It is generally desirable for the network to assume that interaction

between symbols is a first, order relationship. Only when first order relationships

cannot adopt the proper representation should higher order nodes be used. If ex-

isting higher order nodes are unnecessary, the term in (3.26) will force all of its

connections to go to 0. If a higher order node exists with connection weights of 0

to each first order node, the higher order node has no effect on the energy of any

specific rule. This node can be removed or _pruned" from the network without

changing the representation of any rule in the training set. This reduces the num-

ber of higher order nodes required by the network, and prevents a combinatorial

explosion of nodes from occurring.

To implement thisstrategy,al should be much lessthan a2. This allowsweight

to build up in firstorder connections by penalizingexcessiveconnection weights from

higher order nodes. Actual experimental values for al and"a2 are presented below.

Of course,ifthird,fourth, .--.order nodes axe needed for representation,each would

require a forcingfunction with constants

a, < a2 < a3--. (3.27)

66

added to the cost equation G.

3.3.2 Developing higher order nodes

With a weight training technique outlined, itis now possible to discuss the

development of higher order nodes in the network. Initially,the robotic action

portion of the network contains only firstorder nodes. The network istrained using

gradient descent (3.22)and eventually the magnitude of the gradient approaches 0.

When the magnitude of the gradient iswithin an _ceptable neighborhood of 0,the

descent isstopped, and the value

G.y = {E(N.,)- E,(N.,)} (3.28)

is computed for each rule 7 in the training set. For each rule 7, ifG_ is within

an acceptable neighborhood of 0. the trainingiscomplete, and the training set has

been accurately modeled by the network. Ifthe gradient is near 0 and G_ is not

acceptable, thisindicatesthe network was unable to develop suitableweights forthe

trMning set. In this case, higher order relationshipsexistbetween symbols in the

specificrules that the firstorder weights were unable to sufficientlyrepresent.

At thispoint,higher order nodes must be added to the network. One inefficient

method would be to add second order nodes foreach pairof symbols foreach specific

rule in the training set and then retrain using the gradients given by (3.21) and

(3.24).For large training sets,excessivecomputation would be required to compute

allthe gradients. Many of the second order nodes would be unnecessary, and all

theirconnection weights would go to 0.

In general, a rule whose asserted POE value ismuch greater than itsactual

POE isa likelycandidate for possessing a higher order relationship.Ifthe asserted

POE vMue ishigher than the desiredPOE value forthe rule,thisindicatesthat the

connection weights were not allowed to assume a large enough value to accurately

representthe rule.This isdue to the connection overlap between thisrule,and other

|

67

rules that want the connection weight to assume a lower value. Additional degrees of

freedom are required to build up the weight required by this rule in order to achieve

a lower POE value; however, all first order relationships have been exhausted by

the current network. The aziditional degrees of freedom for this "higher order rule"

must come from connections to higher order nodes.

Often, rules in the training set that overlap first order connections with a

higher order rule are not accurately represented after the initial training. Since the

higher order rule tries to add extra weight to the first order connections, it tends to

reduce the POE] values for other rules that use this connection. Overall, therefore,

the presence of higher order relationships can be detected by an "averaging" of

asserted POE; values over the training set.

The method adopted in this work uses the heuristic information discussed

above to add higher order nodes as necessary, and to prune them after each iteration.

After the initial training, the rules in the training set whose asserted POE values are

much greater than their desired POE values are selected. Since rules in the training

set overlap connections, these rules force other training set rules to assume bad

representations. Adding second order nodes for these rules may add the required

degrees of freedom to allow the network to achieve a suitable representation for all

rules in the training set. The network is retrained, and the unnecessary second order

nodes are discarded. If G, is still not acceptable for each rule in the training set,

the next set of poorly represented rules are selected and the process continues. If a.ll

rules are exhausted and the representation is still not accurate, the process repeats

itself with third, fourth, etc. order nodes. The algorithm proceeds as follows

Let

• 01 be the gradient cutoff.

• 02 be the desired accuracy of a specific rule in the trMning set.

68

• Oa and 04 are variables denoting Umits of the POE error band for higher order

node consideration.

• Os be the minimum connection weight allowed before the connection is as-

sumed to be unnecessary.

• H_ is the set of training set rules that contain poorly represented POE values.

• rn be the number of first order nodes.

• rnh be the number of higher order nodes.

• Differror be the POE error band for higher order node consideration.

• _, be a training set specific rule.

1

69

Repeat

1. Fori:ltomandforj:ltom,

(a) Compute

(b) Let w_j = wq - _a.Aq.c
8_ij

Until Z_i Z]i(a_o) 2 < Oa

Let n = 1

While IIG_II> e2 for any rule-),in the trainingset do

1. n =n+l

2. ®3 = 1.0

3. _)4 = Di f f error

zt. While IIG, II > O: for any rule _, in the training set and all training set rules

not exhausted do

(a) Let _¢, = {7:e3 > POE(N,) - POE,(N,) > e3 - e4}

(b) For each rule 7 e/'/7,add allorder n nodes to network.

(c) Repeat

i. Fori= ltom, andforj= ltom,

A. Compute

B. Let 1Bii -_ tt/ij -- _ aG

ii. Fori=l toraandforh=ltomh,

aG
A. Compute

B. Let w_h = w_h - (ac
an_ia

5" (aa _2 _- t aa _2
(d) Until _i ,_J,a-_,,,+ Z]__h_a-'_,_,+ < 01

70

(e) Remove the second order nodes that have all connection weights less than

es.

(f) Compute G-r for each rule "r in the training set.

(g) e3-e_- e_

_. end

end

Using this algorithm, the network undergoes a series of expansions and contrac-

tions until the proper nodes are added that encompass the higher order relationships

present in the training set.

3.4 Some Training Examples

This section presents several sample ARM networks a_ud demonstrates the

results of the training procedure. The example evolves from simple, first order

nodes in ?igu:_s 3.d anti 3.7 to second _rde_" ao_es in Figures 3.S and 3.9. In these

figures, if no connection appears between robotic action and effect nodes, it indicates

that the connection weight is 0.

Figure 3.6 presents a training set of three tested specific rules. As demon-

strated by the training set, the robotic action

SSRMS DEPLOY ORU TOOLSET2 _ (3.29)

has a difficulttime achieving the effect

ORU IS - DEPLOYED (3.30)

since the POE value for this rule isonly 0.30. A POE of 0.30 corresponds to an

energy value of 1.20 by (3.8). The sum of the weights for this specificrule when

asserted on the network, as given by (3.10),must equal 1.20 after the network has

!

71

been trained. If each specificrule in the training set isasserted one at a time on

the network in Figure 3.6 and the POE of each rule iscalculated,one can see that

the network has achieved suitablerepresentations.

Based on the other two rules in the test set,the training procedure allocates

most of the weight to the connection between nodes 5'SRMS (roboticaction node)

and ORU (effectnode), and to the connection between nodes TOOLSET2 (robotic

action node) and ORU. These inhibitory connections indicate that the SSRMS

has a hard time affectingthe ORU and that TOOLSET2 also cannot affectthe

ORU.

Figure 3.7 adds another specific rule to the training set) and the network is

retrained. The new rule indicates that TOOLSET'2 can reliably affect the ORU.

Therefore, most of the cause of the previous difficulty is attributed to the connection

between nodes SSRMS and ORff.

Figure 3.8 adds a rule that demonstrates that the SSRMS can affect the

ORU reliably. Inhibition can no longer be placed solely on first order connections,

because adequate representation of all the rules in the training set would not be

possible. The network deduces that a second order relationship must exist, and

creates six second order nodes corresponding to the pairwise combinations of the

robotic action symbots of (3.29). The network is retrained, the second order node

DEPLOY + ORU is (_ound to be unnecessary, and is pruned. The remainder of the

weight that cannot be assigned to f_rstorder connections isdivided evenly among

the connections between second order robotic action nodes and effectnodes.

In Figure 3.9, a finalruleisadded to the trainingset. During retraining,this

rulecauses the pruning of two more second order nodes that are deemed unnecessary.
p.

During retraining,therefore,a totalof six second order nodes were added, of which

three were subsequently removed.

In each of the training sets,the following constants were used.

72

FT_ DEPLOY ORUTOOLSEI"I -)01_ IS D_.._YED POE: 0._

SSR.MSDE_.DY 0RU_LSEI_.> O_J IS.DEI_.DY_D POE: 0._

DEPLOY _C'TOC_ -> MSC IS_YED POE:0._

C" ©

.0_2
\

.026

DEPLOY

CRU

©

TO0_I "I'OOI.TE'I_

Figure 3.6: A training exaanple

73

Fr_ DEPLOY ORUTOOLSET1 .> Olt/J ZS_YED P_F.: 0._

DEPLOY OI_UTOOL._ -> OitU lS.DI_LOY_D PO=- 0.30

DE_.OY MSCTOOLSEI_ -> MSC XS.DEff.OY_D POE: 0.92

F_

_) .042

I

/

n_

DEPLOY
.026

ORU
•_28

©
L__ACT

©
ACTUATE

©
_C

TOOL.TE_ TOOLSE_

Figure 3.7: A second train/ng example

74

Fr3 DEPLOY 0RU TOOL3L_ o:. 0RU X3.DE?_YED POP_

OL'_,OY ORUT__ .> 0RU]3.DEPLOYZD POE:

DEPLOY M3C T_I__",,, .> _C IS.DEP_YED PUE: 0.q2

Fr3 ACI'UATE ORU TOOLSEI_ .:. 0RU IS.ACTUATED POE: (In

SSRMS POSITION ORUTRU33 -:. 0RU IS.ATTRUS3 POE: 0.94

!
.020 I "m_ I-°62 .

.. I._ .o_,2 I _'____....

..;.....
026

r

© ©
ACTUATE POST_ON

©
.].76 MSC

Figure 3.8: A tr_ning e_ple with high_ order nodes

i I

75

Ft3

.313 0

\

.063 15_Acr

©

\ ©
ORU M_C

.3t3

©

'"_:-_............_,::i...........
t'os Q

S_,',4S SSR._

D_-_./)y ORU

mpm

SlmM

©

.313

<3

llli_ IIIIIl_Iillill Ill._i

%I #

F_g_L_ 3.9: A second tr4in/ngexa=nplewith highexorder node=

76

Table 3.1: Convergence and finM error for test examples

Ezarnple]1 I tevation,s

3.6 342

3.7 781

3.8 457

3.9 536

Max (G,)
0.i x i0-'

0.3 x 10 -9

1.8 x 10 -9

4.3 x 10 -9

0.2 x 10 -9

0.6 x 10 -9

3.8 x i0 -_

9.4 x 10 -9

• 0 _< wq < 1, the bounds on the weights.

• e = 0.05, the gradient step size.

• Differror = 0.25, the error band for rule selection.

• O_ = 10 -9, the minimum gradient before stopping.

• 02 = 5 x 10 -_, the maximum allowable error for a rule in the training set.

• es = 1 x 10 -4, the minimum weight before pruning is allowed.

The assignment of al and c_, which are the forcing function constants, is discussed

below.

The number of gradient calculations required for each example, the square of

the maximum error of a training set rule ((G._)2), and the total sum square error for

the training set (Z].,(G.,) 2) are provided in the Table 3.1. The training technique led

to extremely accurate representations ior each or" the rules, and converged quickly

to the final weight values. These examples serve to illustrate the training procedure.

Although the training sets presented here were small, more complicated ones have

been tested. Chapter 6 provides a case study that includes'a much larger and more

difl:icult training set for the network.

3.4.1 Selection of training constants

As mentioned in section 3.3.1of this chapter, the training algorithm requires

the selectionof constants al and a2 for the forcingfunctions. We know that al < a2

to insure that as much weight as possibleisassigned to firstorder relationships.This

section detailsthe selectionof these constants.

We can picture the function G as a quadratic. The constant al determines the

shape of the area around the minimum of the quadratic. Ifal istoo small,the area

around the minimum is rather flat. This leads to a gradient that changes slowly

as the descent procedure approaches the minimum of G. A slower gradient descent

requires more descent steps. Therefore, ifal is too small, the training algorithm

willtake a long time to converge.

On the other hand, ifal is too large,the function G will sacrificeaccurate

representations of POE values in order to minimize the connection weights. This is

unacceptable.

We can determine the maximum value of the forcingfunction constants for a

given degree of accuracy. Let us define

• e, a given weight step size.

• A = lIE(N,) - E,(N,)I[, the desired accuracy.

• w,,_=, the maximum allowable weight value for any connection.

• a, a forcing function constant.

We want to insure that as a weight approaches its maximum value, the function

G frill decrease if the desired accuracy has not been met. If a is too large, G may

increase due to the forcing function term, and the desired accuracy will never be

reached. This becomes significant as a weight approaches its maximum value, where

78

the forcing function becomes the largest. In other words;

: (3.31){lIE(N-,)- E,(N.)II}2+ c,(w,_:- (): > {lIE(N-,)- E,(N.)II-e}: + aw,_..:

This is equivalent to

2
A 2 + a(w,,,,,. -- _)2 > (A - _)2 + aw,,,...= (3.32)

or

2A -

2wma= --

Ifwe letthe step sizeapproach O, then

So

(3.33)

2A - _ A
lim = _ (3.34)
_--0 2U,'maz -- _ Wmaz

A
ct < _ (3.35)

Wreak:

insures that we can represent a rule to a desired accuracy A given a bound on each

weight, w,,,,.=.

Experiments were conducted to de,.ermine suitable values for al across a range

of training sets that required only first order representations. It was decided that

magnitude of the error between the energy value of each asserted specific rule and

the desired energy value of the rule should =ot be greater than 5 x 10 -3. This leads

to an e.xtremety accurate POE reprbsentation (within 99.5 percent of the desired

value, as given by (3.8)) for the rules in the training set. Given this constraint, cq

is bounded by 5 x 10 -3 for w,,,,,= = 1, by (3.35). Experimentation showed that or1

could assume any value in the range
p,

5 x 10 -s < al _< 5 x 10 -3 (3.36)

without requiring excessive gradient iterations (i.e., more than I0 times the number

of iterations presented in Table 3.1).

1

!

79

We know that c_2 > c_1. Several experiments were conducted that varied a2

while a_ was fixed at 1 x 10 -4 to examine the ability of the training procedure to

eliminate second order nodes by allowing their weights to approach 0. Again, a2

must be less than 5 x 10 -3. It was found that values of

I x I0-_ _ c_ _ 5 x I0-_ (3.37)

effectively eliminated non-essential second order nodes without sacrificing the POE

representation in the network.

Based on this data, al was set at 1 × 10 -4 and a2 was set at 4 x 10 -3 for all

training sets. The experimentation showed that a2 had to be around 40times larger

than c_1 to develop an acceptable representation.

If third order nodes are required by the network, it is necessary to add a

third forcing function with constant c_3. It is likely that the relationship between

_3 and c_2 would be similar in magnitude to the relationship present between as

and c_ to develop an acceptable POE representation in the network. To accomplish

this, al would have to be reduced, along with c_2 to guarantee that a_ < 5 x 10 -3.

Although no experimentation was performed with third order nodes, one can see that

this reduction in c_l would significantly increase the number of gradient iterations

required until convergence. If ,_odes higher than third order are necessary, the

training time would increase even further. This demonstrates a weakness of this

training technique.

3.5 Predicting POE Values for Untested Specific Rules

Prediction using the ARM is the ability to employ developed relationships

between symbols to assign POE values to specific rules that have not been tested.

When planning, the ability to predict POE values is essential since the number

of tested specific rules is quite small compared to the number of possible specific

rules. For a given planning situation, it is conceivable that no tested specific rule

80

provides an acceptable course of action. Instead, an untested rule must be selected

to achieve a aesired effect.To pick a "good" untested specificrule,therefore,one

must understand the relationshipsbetween the symbols in that rule,and how these

relationshipsa_ect itsPOE value.

As stated earlier,one of the difficultiesin developing a training procedure

for the ARM network is the fact that differentspecificrules share the same sets

of symbols. Since this occurs, these rules also share the same sets of connections.

While thismakes training dii_icult,the sharing of connections forms the foundation

for prediction.

The training procedure develops relationshipsbetween symbols by assigning

weights to connections in the network. When untested specificrulesoverlap symbols

with rules that axe in the training set, theirsymbol relationshipsoverlap as well.

The weighted connections that form these relationshipsalter the energy value for

the untested specificrule,which in turn altersthe POE value for it.Therefore, the

training procedure creates relationshipsthat can be used to predict the POE value

for untested specificrules.

Consider Figure 3.6. Any untested specificrule that contains SS._._/S or

TOOLSET2 in the robotic action and ORU in the effect will have a decreased

POE. Similarly, in Figure 3.7, the decreased POE is largely limited to untested

rules that have SSRMS in the robotic action and ORU in the effect. Relationships

that alter POE va2ues axe also dernons_ra_ed in Figures 3.8 and 3.9.

Detailed examples of prediction are shown in the case study, which is presented

in Chapter 6.

3.5.1 untrained weights vs. zero weights

The training procedure createslargeweights in some connections, and assigns

small, or even zero weights to other connections. Some connections willapproach

!

81

a weight of zero to insure that itaxcurately models a relationship between sym-

bois. This indicates that the symbols work well together, and possess littleor no

inhibition.

On the other hand, the nature of the forcing function in G insures that ifa

connection isnot used in the trainingset,itsweight willalso go to 0. This may be

a problem, since itforcesthe network to assume that symbols have no inhibitionif

they are not part of the trainingset.This allowsuntested specificrules that have no

connection overlap with the trainingset to assume a POE value of 1.0,or absolute

certainty.

Itismore appropriate that connections not used by the trainingset be assigned

a default uncertainty value. After training,the connections that were not present

in the training set could be assigned a nominal weight value, dictating the base

uncertainty of an untested specific rule. To accomplish this, we must assign a base

POE value to untested specific rules. Then, we can determine what each weight

should be in the rule, by dividing the corresponding energy equally among all the

first order connections for the rule. If a weight is left untrained by the training set,

it would be assigned this weight value.

For example, if we assume a base POE value of 0.80 for untested specific rules,

this corresponds to an energy of 0.223. If each rule contained 12 connections (e.g., 4

robotic action nodes connecting to 3 effect nodes), each untrained connection would

be assigned a weight of 0.2-.3 or 0.018. All trained connections would maintain their

trained weight values.

3.5.2 Examples of prediction in the ARM

This section uses the example presented in Figure 3.6 to demonstrate the

prediction capabilitiesof the ARM. The example was extended to include other

ACTORs, ACTIONs, and OBJs. All of the connections not mentioned in the

82

training set for exaanple 3.6 are assumed to be untested. A base POE value of 0.80

was assigned to completely untested rules, so the untested connections have a value

of 0.018.

The general rules used are as follows.

• < manipulator > ACTUATE < object > < tool > --,

< object > IS- ACTUATED NULL

• < manipulator > ATTACH < objectl > < object2 > --.

< objectl > IS - ATTACHED - TO < object2 >

• < manipulator > DEPLOY < object > < tool>

< object > IS- DEPLOYED NULL

• < manipulator > POSITION < object > < ,,_ca,.un > -*

< object1 > IS- .4T < location >

• < transpor'_.. > TRA._/_PORT < object > < location > --*

< objectl > IS-AT <location >

The value of a general rule inhibitory connection was 1.0. Each of the following

specific rules was asserted on the network, and the network responded with the

POE values shown.

1. FTS DEPLOY ORU TOOLSET1 ---*

ORU IS- DEPLOYED POE: 0.950

2. SSRMS DEPLOY ORU TOOLSET2 --

" ORU IS- DEPLOYED POE: 0.300

3. SSRMS DEPLOY MSC TOOLSET2 --

MSC IS-DEPLOYED POE • 0.920

!

83

4. MT TRANSPORT AWP TRUSS .-.,

AWP IS-AT TRUSS POE: 0.800

5. SPDM TRANSPORT AWP TRUSS

AWP IS- AT TRUSS POE : 0.295

6. SSRMS POSITION ORU TRUSS -.*

ORU IS- AT TRUSS POE" 0.487

7. SPDM POSITION ORU TRUSS --,

ORU IS- AT TRUSS POE : 0.815

8. FTS POSITION ORU TRUSS --,

ORU IS- AT TRUSS POE: 0.830

9. JRMS DEPLOY AWP TOOLSET2 .-.,

AWP IS-DEPLOYED POE" 0.858

10. JRMS DEPLOY ORU TOOLSET2 -.-,.

ORU IS- DEPLOYED POE • 0.514

11. SPDM DEPLOY MSC TOOLSET1 ..-

MSC IS- DEPLOYED POE • 0.946

The above responses have the following explanations.

1. This specific rule is in the training set.

2. This specific rule is in the training set.

This specific rule is in the training set.

4. No connections used by this specific rule axe in the training set. Therefore,

each weight in the rule was assigned a default value producing the default

POE value of 0.80.

84

5. The SPDM is not a member of the class < _rans_x,'ter > so this specific

rule violates a general rule. The violation adds 1.0 to the energy value of the

configuration, and results in a 10w POE value.

6. This rule demonstrates how the inhibitory connection between 5SRMS in the

robotic action and ORU in the effect lower POE values for untested rules that

use this connection.

7. The ORU robotic action to ORU effect connection in this rule has assumed

the value 0 after training. All other connections are untrained, and possess

the base weight value. Therefore this specific rule has a POE slightly above

the base untrained POE value.

8. Two connections in this specific rule have been set to 0 by the training set.

9. This specific rules demonstrates the use of several symbols that work well

together along with some untested connections.

10. This rule violates the STATE to ACTION relationship given by the general

rules.

ll. This specific rule employs many trained connections that work well together,

as specified by the training set.

Overall, we see that the ARM can provide consistent predictive POE values

for untested specific rules.

3.6 Extensions to the ARM model

Two features are added to the ARM model to make it more versatile. The first

feature allows the user to encode knowledge into the ARM network, if so desired.

The second feature provides a measure of confidence to the user for the POE value

of a specific rule.

i

!

85

3.6.1 The Knowledge Set

From previous discussion,itisknown that the ARM istrained on specificrules

that have been tested in the robotic environment. The training set is constructed

by the user to evaluate the abilityof agents to work together and achieve a change

in state of an object in the world. Itislikely,however, that particular combinations

of agents willnot be tested ifthe user knows that they function poorly together,

or lead to "disaster" situations.Therefore, the trainingset may not include infor-

mation about symbols combinations that are known by the user to be avoided. If

these combinations axe not trained on the network, theirconnections axe assigned

nominal weights by the base POE assignment procedure outlined in section 3.5.1.

Unfortunately, this may allow the ARM to assign a high POE value to untested

specificrules that contain subsets of these avoided symbol combinations.

To remedy thisproblem, a feature isadded to the ARM network that allows

the"user to encode information about symbol combinations that should be avoided.

This feature is called the knowledge set. and is composed of a set of]¢nowlcdge

rules in which the user encodes the information. A knowledge rule iscreated from

a general rule by providing set of symbols or symbol classesin the robotic action

that should not be used together to achieve a set of symbols or symbol classesin

the effect.For example, given the general rule

<de::> ACTUATE < obj > <tool> --,

the knowledge rule

P

< obj > IS- ACTIVATED NULL

< dez > NULL NULL TOOLSET1 --,

NULL IS- ACTIVATED NULL (3.38)

86

isemployed to show that dextrous manipulators should not be used with

TOOLSETI when trying to achieve the stateIS - ACTIVATED. Similarly,given

the general rule

< dez > ATTACH < obj > < obj > ...-,

<obj >

the knowledge rule

IS - ATTACHED - TO <oh j>

FTS ATTACH NULL NULL .--,

NULL NULL TRUSS (3.39)

states that employing the FTS to ATTACH should not be attempted when the

TRUSS is the indirect object of the effect. The NULL symbols in each of the above

knowledge rules are simply placeholders.

The knowledge rules are mapped onto the AtLM network using a technique

similar to general rule mapping. For a first order relationship (only one non-NULL

level in the robotic action of a knowledge rule), a high weight inhibitory link is

created from each symbol in the specified symbol class of the robotic action to each

symbol in the symbol class designated in the effec: of the knowledge rule. For second

order relationships, (two non-NULL levels specified in the robotic action), second

order nodes are created. These nodes are formed by a pairwise combination of

each symbol in the first specified symbol class of the robotic action of the knowledge

rule, with each symbol in the second specified symbol class. A high weight inhibitory

connection is created from each of these second order nodes to each symbol in the

symbol class designated in the effect of the knowledge rule. For higher order nodes,

the process is the similar.

The knowledge set, therefore, provides the user with another mechanism for

specifying relationships between symbols in the network.

]

!

87

3.6.2 The Confidence Factor

When a specific rule is asserted on the ARM network, the network responds

with the POE value of the asserted rule. If the specific rule is not a member of the

training set, the POE value is predicted from

• weights developed by rules in the training set that overlap the asserted specific

rule, and

• weights that are not developed by the training set, but are assigned base

probability values, as described in section 3.5.1.

If an asserted untested specific rule contains connections that are not in the

training set, some of its POE value comes from the base probability weights. Since

these connections are not influenced by the training set, however, it is unknown

what their .,_:_ua5 weights should be. Although the base probability weight is used

to approximate expected behavior, it may not provide adequate representation when

an untested specific rule contains many untrained connections, and has to rely largely

on the base probability weights. Unfortunately, the POE value alone does not allow

a user to discern untested specific rules which contain a large number of untrained

connections.

If an untested specific rule shares many of the same symbols with a specific rule

in the training set, it is very similar to the tested rule. The more similar an untested

rule is to a tested one, the more likely the POE value of the untested rule can be

reliably predicted. On the other hand, the less similar an untested rule is to any rule

in the training set, the less reliable its predicted POE value may be. Unfortunately,

the POE value of an untested specific rule does not provide a measure of the overlap

between the rule and each specific rule in the training set.

II
88

To provide the user with a "measure of confidence_ in the POE value for an

untested specificrule,the canfidenc_ factor (cf)ispresented. In thisimplementa-

tion,the cf of an untested specificrule isa function of:

I. The percentage of trained connections in the untested specificrule.

2. The maximum of the percentages of the connection overlaps with each specific

rule in the training set.

It is possible to define other validconfidence measures, ifthe user desires.

Mathematically, the cf used in thiscase study isgiven by:

OoCN)cf(N) - " C

where

(3.40)

• IN"is a particular specific rule asserted on the network.

• C is the total number of firstorder connections for the specificrule in the

ARM network.

• Ct(:N) is the number of trained first order connections for specific rule N

Co(N) isfound be determining the number of connections which are the same

between IN"and each rule in the trainingset,and then selectingthe maximum

of these values.

Using this scheme, a rule in the training set has a cf of 1.0,which is the

maximum cf value,and representstotal confidence in the POE value. All untested

specificrules have values between 0 and I. The largerthe cffor an untested specific

rule,the more confident the user can be that the POE value accurately reflectsthe

symbolic relationshipsin the rule.

!

89

3.7 Conclusions

This chapter detailedthe design of the AssociativeRule Memory, as presented

in Figure 3.10. The main contributions of the ARM are as follows.

I. The design of a neural network model that is able to represent a symbolic

grammar comprised of a robotic action and effect.

2. The abilityof thismodel to maintain instantiationsof the grammar with a real

valued number representing the probability that the robotic action achieves

the desired effect.

3. A training procedure that guarantees that the network will develop accurate

POE representations for all specific rules in the training set.

4. A training procedure that develops weighted connections that represent the

reliability with which a robotic action symbol affects an effect symbol.

5. A technique for adding higher order nodes when necessary, and pruning them

when they are unnecessary.

6. A demonstration that the training procedure builds connections that can be

used for predicting POE values for untested specific rules.

As stated in the chapter, the ARM model is bound by the following constraints.

1. The POE value is a function of the agents in the robotic action and effect, and

has not been altered by any other environmental influences.

"2. A one-to-one symbol to node mapping is used instead of a distributed repre-

sentation. This leads to a large number of nodes, but simplifies the symbol

relationships stored in the connections of the ARM.

9O

3. The development of hidden nodes may lead to slower training of the network

if third, fourth or even higher order nodes are required for accurate POE

representation.

Overall, the training examples demonstrated that the network could develop

extremely accurate POE representations for the rules in the training set. Also, the

training examples allowed us to explore the predictive capabilities of the ARM, which

allows the exploitation of implicit relationships in the training sets, and produces

reasonable POE values for untested specii_c rules.

This chapter also presented the knowledge set and the confidence factor,two

enhancements to the ARM model. The knowledge set allows the user to encode

known relationshipsin the world that are not present in the training set. The cf

provides the user with a measure of confidence in the POE vMue of an untested

specificrule.

!

!

!

I I

91

A_ons

ORGANIZATION OF MODEL

I._puz

I

$

S_. of Ki_

POE Ro_uc A_o_s

Ou_u[

POE

Vails

0 C 0

--
D

Ro_oc ..,_oo

A._oc_ve _ Of A_noas

Modg of"

POE valu_

for Romuc

A_ions

Figure 3.10: Block diagram with ARM displayed

II

I

I

CHAPTER 4

ASSOCIATIVE RECALL - AN OPTIMIZATION TECHNIQUE

The functions of the Associative Rule Memory are as follows.

1. Storage of specific rules.

2. Storage of general rules.

3. Generalization of tested specific rules to predict POE values for untested spe-

cific rules.

4. Associative recall of high POE robotic actions given a desired effect.

This chapter examines the last of these ARM functions, associative recall as shown

in the block diagram 2.1.

Associative recall is the process of extracting a stored inference or trace from

a memory by providing the memory with a _key" that has been matched to the

inference. For this research, the memory key is a desired effect that must be achieved

by the robotic system. The stored inference in the ARM is a robotic task that

achieves the desired effect. In other words, by providing the ARM with a desired

effect as input, the ARM should produce as output a robotic task that has a high

probability of achieving the desired effect, along with the probability of effect.

In artificial neural networks, associative recall is performed by asserting a set

of input nodes, the key, and allowing network to "settle" the output nodes on a state

that is the matched memory trace. Most ANN's find the associated memory trace

bff optimizing an energy measure that is a function of the weights in the network

and the current state of the nodes. Examples of networks that perform recall in this

manner are Hopfield Networks [44] and Boltzmann Machines [55].

92

93

Both of these ANN's represent consistency between asserted nodes by the

energy formula given in (3.3).For these networks, a high energy value implies a

largeinhibitionbetween setsof assertednodes. Large inhibitionispresent when the

memory trace asserted on the output nodes does not match the key presented on

the input nodes.

The lower the value of E(N) for a particularinput key, the smaller the inhi-

bition that existsbetween the key and the recalledinferencepresent on the output

nodes of the network. Therefore, associativerecallisthe process of findingthe set of

asserted output nodes that minimizes the function E(N) for a given set of asserted

input nodes.

In the previous chapter, we developed a method for storingthe probabilityof

effectfor provided specificrulesin the ARM, and demonstrated the generalization

of these probabilitiesto rules that have not been explicitlytested. The procedure

uses the weights of the network to store the probabilityofa specificruleas an energy

value. Since the relationshipbetween probabilityof effectand energy"isgiven by

POE(N) = e-s(N) (4.1)

we can see that a high probability implies a low energy value. Specifically, a prob-

ability of effect of 1.0 has an energy value of 0.0, and the energy increases for all

probabilities less than 1.0. Further, violations of general rules incur an increased

energy because each violation adds positive weight to the value of E(N).

The design of the ARM implicitly allows associative recall to be performed in

ways similar to the ANN's discussed above. By minimizing the value E(N) of the

ARM for a particular desired effect (input nodes), the network settles on a set of

robotic action (output) nodes that have a high probability of achieving the desired

effect. The procedure is described as follows.

I. Assert desired effectnodes (Input).

!

94

2. Choose a set of robotic action nodes (Output).

3. Assert robotic action nodes and higher order nodes.

4. Calculate E(N). Compute POE(N).

5. IfPOE(N) is lessthan desired (non-optima/) go to 2.

6. End. Robotic action that has a high probabilityof achieving the desiredeffect

has been found.

Step 2 of the above algorithm is accomplished through an iterative optimiza-

tion technique. In general, given a function f(-) defined on a n-dimensional space

Y", an optimization technique attempts to find suitable values for the vector X -

(zl, z2,.-., z,_) e Y'_ such that f(X) achieves a desired value, often the minimum

or maximum of the func;_on. An iterative optimization function considers the past

history of attempts at optimizing f(.) when choosing the next search point X.

The rest of this chapter is devoted to the optimization technique required by

step 2 of the associative recall algorithm. Section 4.1 describes the shape of the

energy hypersurface, and the requirements it places on an optimization technique.

Section 4.2 compares two suitable optimization techniques, the Genetic Algorithm

and Simulated Annealing. Section 4.3 describes research on reducing the search

time of the Genetic Algorithm using an immigration operator. Section 4.4 develops

a proof that shows that the GA modified with the immigration operator converges

in probability to the optimum of a cost function. Section 4.5 explores representation

issues between the GA and the ARM model. Section 4.6 describes a method for find

sets.of high POE robotic actions for a given a desired effect. Section 4.7 outlines

the contributions and concludes this chapter.

I
95

4.1 The ARM Energy Function

The ARM energy function is defined by

1

E(N)= w,in n (4.2)
* i

where ni is the state of node i (0 or l) and wij is the weight of the connection

between nodes i and j. This function maps a binary vector N - (nl,n2,...,nk),

(n= e {0,i}) onto a real number bounded below by 0.0.

Several considerations axe essentialwhen optimizing thisfunction.

i. The domain of the energy function isdiscreteand binary.

2. The range of the energy function can have severediscontinuitiesfor neighbor-

ing domain values. Neighboring domain values have a Hamming Distance of

i.

These two constraintsruleout most numerical optimization techniques,such

as discretegradient descent,that would quicklyterminate in a locallyoptimal energy

state.Instead, probabilisticsearch metho_ _re used to findgloballyoptimaJ energy

values for the ARM. These methods provide means of escaping or avoiding the

diflqcultlocal minima present in the ARM, and allow the function domain to be

binary.

4.2 Two Optimization Techniques

Two algorithms that have often been used to solvedii_cultoptimization prob-

lems axe Simulated AnneaLing (SA) and the Genetic Algorithm (GA). Both use a

probabillsticselectionand generation strategy to develop seaxch points forevalua-

tion.

I

L_

I .

!

96

4.2.1 Simulated Annealing

Simulated Annealing is the most common technique used to minimize the en-

ergy function in a Boltzmann machine during the process of associativerecall.This

technique simulates the annealing process of metal by probabilisticallyallowing up-

hillsteps in a state-dependent cost function while finding the global cost minimum,

or ground state. The algorithm allows controlof the search randomness by a user

specifiedparameter, T. In true metal annealing, thiscost function isthe energy of

the system, E, and T isthe annealing temperature [57].

Given a small random change at iterationifrom the system state

Ni - (nl, n2,..., nk) to N_ and the resulting energy change, AE = E(N_) - E(Ni),

if AE _ 0, the change is accepted. If the change is accepted, the current state

Ni+l is set equal to the new state N_. If _E > 0, the probability the new state is

accepted is

P(Ni+I -" N_) = e -''E/_'ar (4.3)

where Ks is the Boltzmann Constant and T is a user set parameter. By reducing

T along a schedule, called the annealing schedule, the system should settle into a

near-ground state as T approaches 0.

Another method for SA is discussed in [55]. Using this method, if the energy

change between Ni and N_ is AE, then regardless of the previous state, accept state

N_ with probability

1

P(Ni+I - N_) - 1 ÷ e-aEl r (4.4)

Since the domain of the ARM isbinary,itshould be noted that in both of the

above methods, N_ isHamming distance I from Ni.

The process of Simulated Annealing escapes local minima through its prob-

abilisticsearch, and converges to the global energy minimum in probability under

conditions detailedin [69].These conditions forcethe annealing schedule to followa

97

exponential decay temperature trajectory, so the convergence to the global :uinimum

can be extremely slow. Further, SA is an uninformed optimization technique that

cannot exploit the implicit constraints that may be present in the target function.

4.2.2 The Genetic Algorithm

Another technique used to optimize nonlinear or discontinuous functions is the

Genetic Algorithm (GA) [70]. In contrast to other random search techniques, the

GA maintains a population of points in the space while searching for the optimum.

For most GA's, each point in the domain is represented by a binary string and has

an associated fitness value obtained by evaluating the cost function at that point.

Since the makeup of the population is changed each iteration to emphasize members

(points) that optimize the cost function, a near-uniform population will develop as

the GA searches for the optimum string.

Each cycle of the GA is comprised of four main phases: evaluation, selection,

recombination and replacement. During evaluation, each member is assigned a

fitness value relative to its cost, such that lower cost members receive higher fitness

values. Based on fitness, members are probabilistically selected from the population

for recombination. These members are called parents. Parental pairs exchange bits

during the recombination process and form binary strings called children. This

process is called crossover. The worst members of the population are replaced by

the children, and the cycle repeats. Details of the algorithm are presented in [71].

In an attempt to prevent population convergence to local optima (premature

convergence), a mutation operator is added to the system. With a new generation

of the population, each bit of every member has a small probability of inverting.

The mutation adds diversity to the population and promotes local search and hit.l-

climbing.

Particular aspects of this algorithm make it a powerful search tool. The

]

|

98

crossover mechanism forces search on au n-dimensional hypercube by discovering and

promoting particular substrings (called schemata) that perform well. The schemata

are low-order substrings,where the order or a substring is itslength in bits.These

schemata combine to discover the structure of the search space, which may not be

known initially.The discovery and propagation of high performing schemata al-

lows the GA to exploit implicit constraintsin the target function. Further, since

the algorithm uses a population of points, many planes of the hypercube can be

searched at once, leading to implicitparallelism[70].Applications of thisalgorithm

to optimization problems have been presented in [72,87, 88].

4.2.3 Some initial experiments: comparing SA and GA optimization

techniques

Some initialexperiments were performed to show that the Genetic Algorithm

could be used as an optimization technique for Boltzmann Machines, including the

ARM. These results were originally described in [16].

A Boltzmann Machine is created containing 13 nodes, N = (nl, n2,..-, nls).

Each node is connected to every other node. Nodes n4 and n6 form the input to

the network, and their values are fixed at 1.0. The other network nodes form the

output of the network. By changing the values of the output nodes in the network,

the minimum energy of the network can be found. For this purpose, SA and GA

optimization techniques are invoked to find the minimum energy by altering the

output node values.

For the given input, the net has three energy minima corresponding to states

N = {(001010100100100), (110110110001101), (001111101100010)}. The respective
P

energy for each of these three states is (0.8, 0.6, 1.0). Each simulation technique

attempts to find the global energy minimum of the net, which is 0.6, and corresponds

to the correct output for the given input. The cases presented here show best and

I

99

worst performance of each technique over 10 trials.

The Genetic Algorithm is set at a population size of 20 members. Each member

is 15 bits long, and represents a complete state of the network. Consequently, each

bit of a member represents the state of one node in the network.

The fitness function assigns values by the relationship

FITNESS(8) = MAXCOST-COST(s)

where s is a member in the population, MAXCOST is the maximum energy of

the network, and COST(s) is the cost of the network if it assumed the state given

by member s. One-point crossover is used and the mutation rate is set at 0.005

mutations per bit. Each cycle selects a set of parents for crossover equal to 80

percent of the population size. Further, the GA is enhanced by replacing the worst

member every two generations with a random member, a detail that will be discussed

below.

Some initialexperiments with Simulated Annealing using a heuristiccooling

schedule yielded suboptimal solutionswhen minimizing the energy of the network.

To prevent suboptimal solutionsfrom occuring during these experiments, Simulated

Annealing isperformed using the a_ceptance criteriain (4.4).The system iscooled

in accordance with the law

t
= (4.5)

To log(!O+ _)

where Tt(t) = temperature at time t and To = initial temperature.

!

!

The net state changes in Hamming distance 1 increments.

,-Figures 4.1, 4.2,4.3 and 4.4 present the best and worst performance of each

algorithm over 10 trials.The GA found the minimum energy stringbetween the 20th

and 180th population. Since there were 20 stringsper population, thisindicatesthat

between 400 and 3600 search points had to be generated. The best performance by

|

100

Simulated Annealing required over 5500 generated points. The worst performance

did not find the minimum afterevaluating 12000 generated points, which was the

most attempted.

The resultsof these limitedexperiments clearlydemonstrate the abilityof the

Genetic Algorithm to perform the task of associativerecallin a BoltzmaJ1n Machine

at leastas well as Simulated Annealing. Also, the GA isable to exploit the implicit

constraints associated with a problem, such as the relationshipsbetween nodes in

the ARM, which Simulated Annealing cannot do. Further, Simulated Annealing

iscontrolled by an exponential decay temperature trajectory in order to guarantee

convergence to the globaloptimum solution,which can inhibitSA from findingquick

solutions to easy problems. For these reasons, the Genetic Algorithm seems to be

a better optimization technique than Simulated Annealing for associativerecallof

the ARM. Therefore, we have chosen the GA as the optimization technique for the

ARM. This isshown in Figure 4.5.

4.3 Reducing the Search Time of a Genetic Algorithm

The next several sections present and analyze a new technique for reducing

the number of function evaluations required by the GA to find the global optimum

solution. Although the test suite used in experimentation contained a broad class

of functions, direct application can be made to Boltzmann Machines and the ARM.

4.3.1 An introduction to immigration

The tradeoff between exploration and exploitation in serial Genetic Algorithms

for function optimization is a fundamental issue [71]. If a GA is biased towards ex-

ploitation, highly fit members are repeatedly selected for recombination. Although

this quickly promotes better members, the population can prematurely converge to

a local optimum of the function. On the other hand, if a GA is biased towards

m

i01

i I
|

I
,ii . i ii ill i

!4 ' ' i" '

3 1 " I

: ! ! , i a
i I I i

00 500 1000 _ 2000 2._00 3000 35'00 4000 4_00 5000

Nm _1_80mml_

Figure 4.I: Best performance of GA

4

3

0'
0

,,,,_ ii

i

!

"J l

I

I !
500 1000

_ , ,,,

i-,,

i

ii

,,m
I

l,g)o 2ooo
l

44_0 4.qO0 .qO00

N_ ot Poiass 0azrmd

Figure 4.2: Worst performance of GA

102

0

i

z

9

8:

?

6

4

3

2_

t

0
0

i

-- , !

[

/I
IA+1i ' i

L /Pl I!

tl
J!

i 0

' i i

¢ I

Fig_e 4.3: Best per_rmance of SA

.3

i

:>

9

8:

7

6

5

4

$

2

1

I _

0 '

tlI J

LO_

Mum_r _ l_m_ C,mm_

_(Z:0

Fig_e 4.4: Wor_ pert"orm_ce of SA

103

ot'l_o:tc

Al:_ms

OR_ANIZATION OP MODEL

Spadm:_

POE ?.abo_¢ Acdous

A._oc_v¢ _:c=!1of Ac=ons

(_.,_,,. _n))

Model of

POE vamc=

for Rc_dc

Ac=ons

(Am,()

Fi&_ure 4.5: ARM system block ciiagr_m with GA for associative recall

' 104

exploration, large numbers of schemata axe sampled which tends to inhibit prema-

ture convergence. Unfortunately, excessive exploration resultsin a large number of

function evaluations,and defaultsto random search in the worst case. To search ef-

fectivelyand efficiently,a GA must maintain a balance between these two opposing

forces.

This study experimentally examines an immigration operator that for certain

types of functions, allows increased exploration while maintaining nearly the same

levelof exploitation for the given population size. Section 4.3.2 provides relevant

background material on this topic and develops the motivation for this study. In

section4.3.3,we describe the immigration operator, itsincorporation into the eval-

uation, selectionand recombination cycle of a Genetic Algorithm, and predict the

behavior of this "Modified" Genetic algorithm. In section 4.3.4,the implementa-

tion of two genetic algorithms isdescribed. One algorithm is based on steady state

GA's, and _he other isbased on restarted GA's as ctescribedby Goldberg [78].Also

described is the implementation of the two GA's modified with the immigration

operator.

To compare the performance of each GA with and without immigration, a

suite of test functions is developed. Each function is characterized by different

types of local and global optima. The localoptima axe designed to provide traps

that the geneticalgorithm must successfullyavoid or recoverfrom to achieve a global

optimum. These functions are defined in section 4.3.5. Section 4.3.6 discusses the

experiments performed on the testsuiteand presents each GA experiment in terms

of fitnessassignment, population sizes,mutation rate and immigration rate. The

resultsof the GA experiments are examined in terms of the number of evaluations

required to find the global optimum of each function and are presented in Section

4.3.7.Itisshown that a GA modified with immigration reduces the average number

of evaluations required to find the function optimum over a range of population

10,,,5

sizes.It isfurther shown that the number of trialsrequiring an excessivenumber of

evaluations is reduced for functions in thisset. Section 4.3.8 provides conclusions

and recommendations for further research on thistopic.

4.3.2 Background and motivation

Population sizeisone parameter that directlyeffectsthe balance between ex-

ploration and exploitation. DeJong [72]notes that increasing the population size

improves long-term performance of a GA at the expense of degraded on-line per-

formance for his test suite. In an extensive study, Schaffer et al. [89]test GA

parameters for an expanded suite of functions and measure on-line performance.

The study indicates that functions with many localoptima have good on-line per-

formance with largerpopulation sizes;however, the study notes that an excessively

large population imposes an increased number of evaluations per generation and

produces poor overallperformance.

As these studies show, increasing the population size of a GA supplements

the amount of _raw material" availablefor processing. Ifthe necessary material is

present in the initialpopulation, the GA can converge to an optimal solution. If

the initialpopulation sizeis very large,the optimal schemata may very likelybe

present and the optimal solution willbe found.

However, large population size can lead to an inefBcient GA. The GA processes

the schemata contained in the _raw material_ and exploits those schemata that

perform well. As the population sizegrows and the selection _pie" is divided into

more slices,the exploitationdecreases. A decrease in exploitationmeans that better

schemata propagate at a slower rate. This forcesthe GA to increase the number

of'population samples over repeated generations in order to determine the optimal

schemata, and slows convergence of the GA.

I

• 106

Goldberg [78] also emphasizes the tra£1eoff between schema processing (ex-

ploration) and convergence rate (exploitation) with regard to population size. To

combat slow convergence in serial GA's while finding the optimum of a function,

Goldberg suggests using smaU popuiation GA's that are restarted after convergence.

The restart procedure consists of keeping only the best individuals of the converged

population and replacing other members by randomly generated individuals. Gold-

berg shows that this procedure ma_nt_ns a high rate of schema processing, a cost

measure developed to examine GA performance. Intuitively, this technique m_n-

tains a very high level of exploitation, since smaU populations rapidly converge to

the best schemata present. Exploration is also enhanced by restarting the popula-

tion with random members after convergence. Therefore, this technique seems to

achieve some balance between the two G A forces.

Given that small population GA's may not possess the necessary schemata to

find the optimal solution, and large population GA's can be inefficient in schema

processing, this study examines the effect of continually replacing the worst members

of a GA population w'_.k random members. The technique is called iramigra_ion.

For GA's of the type tested by De2ong [72] and Schaffer et. al. [89], immigration in-

creases the amount of _raw material" available to the GA, and enhances exploration

without increasing population size. For Goldberg's restarted GA, immigration al-

lows increased exploration while the population converges, and may prevent quick

convergence to a local optimum. This is especially significant if the test function

contains local optima that are difficult to escape.

4.3.3 A GA with the Immigration Operator

- To balance exploration with exploitation, we propose the following algorithm

that incorporates the immigration operator into the general structure of a Genetic

Algorithm. A preliminary version of this algorithm was originally presented in [16].

107 "

The Modified Genetic Algorithm

i. Evaluate each member of the population and assign a fitnessvalue.

2. Replace rn current worst members of the population with m randomly gener-

ated and evaluated members. (Immigration Operator)

3. ProbabilisticaUy selecta subset of members based on fitness.

4. Recombine selectedmembers to form children.

5. Replace the worst members of the population with children.

6. Mutate some members to maintain population diversityand perform local

search. Mutation isnot performed on one copy of the current best member.

With each generation of the GA, random members axe immigrated and replace

the worst members in the population. It isimportant to note that the number of

random individualssubstituted into the population each generation (m, calledthe

immigration rate) issmall compared to the sizeof the population. The advantages

and tradeoffsof immigration are described below.

1. When a non-modified GA is initialized its population of n random members

must contain most of the "raw material" required to assemble the optimal

string through selectionand crossover. With smaller population GA's, the

necessary schemata to build the optimal string may not be present in the

initialpopulation. Ifthisis the case.the GA must relyon mutation to bring

in the necessary schemata, which can be very ine_cient, especiallyin problems

with many localoptima. The immigration operator allows the GA to sample

many more individualsduring search,and more easilyacquire the necessary

structure to find the optimal string;however, immigration does not increase

the size of the population, since random members replace poor performers.

I

• , 108

Therefore, immigration allows a size n population to _xplore the space of a

larger population.

2. Since the actual population size is not increased to accomplish the added

exploration, the high performing schemata in the population can propagate

at nearly the same rate as a GA without immigration. In contrast, if the

population size is inc/'eased to enhance exploration, the schemata propagate

more slowly, due to decreased selection pressure on good schemata. There-

fore, immigration increases exploration while maintaining selection pressure

(exploitation).

3. When a G A operates on a deceptive function [71] low-order schemata that

are present in the optimal string have poor average fitness values. Individuals

containing these schemata perform poorly, and axe replaced in the population

during the selection and recombination process. Immigration provides the GA

with repeated opportunities to acquire optimal building blocks, even after they

have been discarded.

. The inclusion of an immigration operator does force a tradeoff in the GA.

Immigration exchanges poor performers with random members. Each random

member must be evaluated, which may increase the number of evaluations

required to find the function optimum; however, immigrants can also bring

missing structure to the population which should reduce the number of eval-

uations required to find the optimum. Therefore, the tradeoff of increased

evaluations versus increased structure must be examined experimentally to

determine the applicability of immigration in a GA.

One way to look at a GA modified with the immigration operator is _ a GA

with a large _virtual _ population that maintains much of the selection pressure of

a smaller population.

109

4.3.4 The Implementation of Two Genetic Algorithms

In this study, two differentGA's were implemented, each with and without

immigration. The firstalgorithm isa steady state GA. Each iterationof the algo-

rithm we used isdescribed as follows.

Steady State GA

i. Evaluate each new member of the population and assign a fitnessvalue.

2. ProbabilisticaUy selecttwo members from the population based on fitness.

These members are parents.

3. Perform one-point crossover on the parents at a random string position to

form two children.

4. Probabilistically perform mutation on the children.

5. Replace the two worst members of the population with the children.

6. ProbabilisticaUy perform mutation on the rest of the population (optional).

The algorithm is modified to include immigration by the addition of the fol-

lowing step.

1.5. Generate and evaluate m random members and replace the rn worst mem-

bers of the population with the m random members.

| 110

The second algorithm is based on Goldberg's restarted GA. Given a popula-

tion of sizen, each iterationof the algorithm proceeded as follows.

Restarted GA

I. Evaluate each member of the population and assign a fitnessvalue.

2. Compute the bitwise convergence Of the population.

3. Ifthe convergence isgreaterthan a given threshold,replaceallbut the best two

members of the population with randomly generated and evaluated members.

4. ProbabilisticaUy selectn - 2 members from the population based on fitness.

5. Randomly order the n -2 selectedindividualsand form pairs.These pairs are

parents.

6. Perform one-point crossoveron each setof parents at a random stringposition

to form children.

7. Replace the n - 2 worst members of the population with the children.

8. ProbabilisticaUy perform mutation on the children.

For selection,the restarted GA used Stochastic Universal Sampling as de-

scribed by Baker [76].

The algorithm is modified to include immigration by the addition of the fol-

lowing step:

P

1.5. Generate and evaluate m random members and replacethe m worst mem-

bers of the population with the rn random members.

mm

IIi

Only n -2 members are selected each generation to insure survivalof the best

two performing members.

4.3.5 Test Suite of Functions

As stated earlier, immigration imposes a tradeoff in a GA. The added structure

introduced by the random members occurs at the cost of evaluating each random

member immigrated. Given this tradeoff, the type of functions where im_gration

should achieve a favorable balance between these factors and increase performance

of the steady state GA are those functions with local optima that are di_cult to

avoid or escape. Functions of this nature require the steady state GA to be more

circumspect while converging, and therefore may require sampling more structure.

Immigration introduces the needed structure that may have been discarded from the

population. By increasing the structure available to the GA. "..'nmigration should

reduce the chance of converging at a local optimum, and thereby reduce the overall

number of function evaluations by the steady state GA.

On the other hand, on functions that are unimodal, a steady state GA with

immigration should perform poorly. A steady state GA operating on a unimodal

function has a reduced chance of losing the structure necessary to find the global

optimum. Adding the immigration operator introduces redundant structure at the

cost of function evaluations. In this case, the trade, off between added structure vs.

added evaluations does not achieve a favorable balance, since the added structure

would already be in the population. Therefore, a steady state GA with immigra-

tion should increase the number of function evaluations required to find the global

optimum of a unimodal function.

It is difficult to predict the effect of immigration on a restarted GA. Like the

steady state GA, immigration should allow a small population GA to sample more

structure, and help prevent the GA from settling into a local optimum from which it

|

I

1

!

. i12

is difficult to escape. This should reduce the number of function evaluations required

by the GA for multimodal functions.

For unimodal functions, it is reasonable to believe that the small population

must converge a number of times before the global optimum of the function is

found. Each convergence imports a host of new random members. It is difficult to

predict whether importing random members after convergence is more efficient than

immigrating random members during convergence, since both techniques maintain

a high rate of schema processing.

As described in section 4.1, the shape of the ARM energy function is highly

nonlinear, and possesses many local minima. Since it is difficult to describe the

shape of the ARM function for a given asserted effect, a more understandable set of

functions have been created to point out the types of energy surfaces that the GA

might expect. The use of these functions also demonstrates that the immigration

operator is applicable to functions other than the energy of the ARM model.

The experimental suite consists of a set of six functions that have different

types of local and global optima. The suite was created to examine the ability of

a GA to escape or avoid difficult local optima. This is reflected in the number of

function evaluations required to find the global optimum of the function. By using

a suite of this nature, one can determine the type of problems that prove difficult

for a GA to solve, and show how the immigration operator affects performance.

Each of the functions is defined on a 20 bit binary string. The optimum cost

value for each function is 0.0, which is the minimum value of the function. The

functions are described as follows:

1. F1 (ODDEVEN): The purpose of this function is determine how well a GA

can combine low-order, high-performing schemata into a structure where good

local performance may lead to poor global fitness. In terms of the ARM, this

is similar to subsets of agent symbols that work well together, but work poorly

113 "

when combined into larger sets due to higher order relationships.

A sUding window of length 4 is moved one bit at a time over a twenty bit

member. The maximum cost is assigned 17.0. Each time the pattern 0101

or 1010 appeared in the window, 1.0 is subtracted from the cost. A pattern

of alternating l's and O's, 01010101010101010101 or its complement produces

the minimum cost of 0.0. A string of all l's or all O's has the maximum cost

of 17.0.

For example, the string OlOlOlllllllllllllll has a functional value of 17.0

- 3.0 : 14.0 since there are three 4 bit stringsof alternating patterns. The

firstone startsat position 0 and is0101, the second begins at position i and

is 1010 and the third begins at position 2 and is0101.

This function contains localminima (optima) that may trap the GA. Consider

the member 01010101011010101010. This member has a cost of 17.0 - 14.0

= 3.0 that would indicate that it is a near optimal member; however, the

member must actually invert the values of 10 consecutive bits in order to

achieve the the optimal configuration, which is a large Hamming distance.

Such large Hamming distance disturbances axe di_cult to create through the

mutation operator without destroying the good structure in the population.

Therefore, ifthe population converged around this pattern or a similar one,

the GA would be trapped in a localoptimum. The exaxnple demonstrates that

the combination of low-order, high-performing building blocks may produce a

stringthat isfar from the global optimum.

2. F2 (DECEPTI): The purpose of thisfunction isto determine the performance

- of a GA on a difficult,two bit deceptive problem. For the ARM, thisfunction

determines if a GA can escape a robotic action that forms a good local mini-

mum in the energy function, to find a very different robotic action that is the

l

• 114

optimal solution.

The 20 bit member represents four non-overlapping fields, each of length 5 bits.

The maximum cost is assigned 28.0. For each five bit field, 1.2 is subtracted

from the maximum cost for each bit in the field that is a 1. However, if all five

bits in the field are 0, 7.0 is subtracted from the maximum cost. Therefore,

a field of five 1 bits subtracts 6.0 from the maximum cost, so the member

11111111111111111111 has a cost of 4.0. The minimum cost member is all O's,

and has a cost of 0.0.

For example, the member 00000111111010100001 subtracts 7.0 for the maxi-

mum cost for bits 0-4, 6.0 for bits 5-9, 3.6 for bits 10-14 and 1.2 for bits 15-20,

for a total cost of 28.0 - 17.8 - 10.2

This function falls within the class of GA-hard problems [71], since it contains

low-order deceptive schemata. These indicate that the function minimum is a

string of all 1 bits when it is really a string of all 0 bits. In terms of average

member fitness, this function can be described as:

• f(=..-'0_...')< f('...'I*...')

• f('...=00=...')< f(-...-01,....),f(,...'i0=....)< f(....*11-..._)

• Also, f('..._000=...=) < f(=..._lll'...')

3. F3 (DECEPT2): The purpose of thisfunction isto determine the performance

of a GA on a simpler, one bit deceptive problem. For the ARM, the same

comparison isvalid.

A slidingwindow of length 4 is moved one bit at a time over the twenty bit

member. The maximum cost is assigned 51.0. At a given window location,

each I bit in the window subtracts 0.5 from the maximum value. Ifallbitsin

the window are 0, 3.0 issubtracted from the maximum value. The minimum

I

115

cost of the function is 0.0 and occurs when each bit in the individual is O.

When each bit in the individual isI,the cost is 17.0. For example, the string

11110000111111111111 would have a cost of 22.0.

This function also contains low-order deceptive schemata, that indicate the

function minimum is a stringof allI bits,when it isreally a stringof all0

bits.In terms of average member fitness,thisfunction can be described as:

• f('-.._'0"...') < f('.-.'l'--.')

• f(*...*00"...*) < f(*...*11*...*)

4. F4 (MIRROR): The purpose of thisfunction isto examine the abilityof a GA

to process high-performing, high-order schemata while maintaining the consis-

tency of low-order schemata. The cost function isdesigned to be much more

sensitiveto the high-order schemata than the low-order schemata. For the

ARM, this function testsifthe GA can throw away small subsets of symbols

in a robotic action that perform well,to fred ones that perform better.

A maximum cost of 39.0 isassigned. Bit 19 of the member ismide coadguous

to bit 0 for wrap around. For each bit that is the same as its rightmost

neighbor, 0.5 issubtracted from the cost. Also, ifbit i (0 < i< 9) and bit i +

10 differ,3.0 issubtracted from the cost (e.g.,ifbit 1 isdifferentfrom bit 11,

3.0 issubtracted, ifbit 2 isdifferentfrom bit 12, 3.0 issubtracted, etc.).The

minimum cost of 0.0 occurs when a stringof ten 1'sisfollowed by a stringof

ten O's.Since wrap around isallowed,the pattern can begin anywhere in the

member. A stringof 1'sor allO's has a cost of 20.0

For example, 00001111111111000000 has cost 0.0 since ten l'sare followed by

ten O's.The string10101010101010101010 has a cost of 9.0.

This function should prove difficultforthe GA to solve.Consider the member

00011100001110001111. Ithas a costof 2.0 yet itisHamming distance 6 away

!

• 116

°

from the optimal solution.This forms a localoptimum from which it isvery

difficultto escape.

For thisfunction,the major reduction in costoccurs when high-order schemata

axe consistent,with a slightreduction when low-order schemata axe consistent.

As shown in the example, this can lead to members that have strong high-

order consistency,but poor low-order consistency. This creates localminima

that prove diffcultfor a GA to avoid or escape.

F5 (EIGHTAWAY): This function testsa GA's abilityto assemble schemata

that are of differentorder. The function is more sensitive to higher-order

schemata than itis to low-order schemata. For the ARM, this is similar to

the F4, but ismore difficult.

A maximum cost of 41.0 isassigned. For each bit i in the member different

from bit i q- I,subtract 0.5 from the cost.Also, the cost isreduced as follows.

(a)For(0_<i_<4)

i. Let m--i, let n-m+8

ii. Repeat

A. If bit m is different than bit n subtract 2.0 from the cost.

B. Let rn -- n. Let n --- rn + 8

C. lf n _ 20, n = n - 20

iii. Until rL = {

The minimum of this function occurs at 01011010101001010101 or its comple-

ment. A member of all O's or all l's has the maximum value of 41.0

This function forces schema consistency for defining lengths 4, 8, 12 and 16.

The function is very sensitive to these high-order building blocks. Consistency

should also be maintained for low-order schemata, but must be violated in

mm

117

some instances in order to achieve the optimal string.The localoptima this

function possesses axe similaxin nature to those possessed by the function F4

(MIRROR).

6. F6 (ONEMAX): This isthe same bit counting function described by Acldey

[90]and isunimodal. For the ARM, thisteststhe abilityof the GA to search

a very simple, unimodal energy function.

I

A maximum cost isassigned 20.0. Each i bit subtracts 1.0 from the cost. The

minimum cost occurs when all20 bits axe I and has a cost of 0.0.

4.3.6 Description of Experiments

The focus of the experiments is to determine the effectof immigration in a

Genetic Algorithm on the testsuite of functions.As stated earlier,the immigration

operator should increase the exploration of a GA without significantlydecreasing

the exploitation of the GA.

For the steady state GA, the increased explorationshould prevent the GA from

prematurely converging and becoming trapped in a localminima. This fact should

be reflectedin the number of GA trialsthat require an excessivelylong time to find

the function optimum. Also, sincethe population sizeismaintained, the GA should

have the exploration power of a largerpopulation with the exploitationof a smaller

one. This would be reflectedin the average number of function evaluationsrequired

to find the global optimum. Therefore, for the steady state GA, two performance

criteriaaxe examined.

I. The average number of evaluations required to find the function optimum is

P

the firstcriteria.

2. The number of trialsthat required an excessivenumber of evaluations to find

the function optimum isthe second criteria.These trialsare called"outliers."

I

i I 118

For the restarted GA, the inherent reinitializationprocess should prevent the

population from becoming trapped in a local optimum for many generations. Be-

coming trapped in a local optima leads to an excessive number of evaluations, or

outliers.Since the restarted GA should prevent this,immigration should not sig-

nificantlyreduce the number of outllersfor an experiment. However, immigration

does increase the amount of exploration performed by the GA while the population

isconverging. The increased exploration may allow the GA to be more circumspect

and avoid local minima. Avoiding local minima should decrease function evalua-

tions. Therefore, ifimmigration aids this algorithm, it would be reflectedin the

average number of function evaluations required to find the optimum.

4.3.6.1 Design of the steady state GA experiment

Since exploration vs. exploitation isthe focus of this work, each function is

evaluated over a range of population sizes.The smallest population sizeis30. For

each function,the population sizesaxe repeatedly incremented by 10 members until

the GA performs worse than with the previous population size.

The fitnessfunction firstranks each member of the sizen population. Then,

a fitnessvalue isassigned to each member s using the equation

Fit,',ess(s) = e_'p(3 ,n - rank(s)) (4.6)
1l

The above fitnessassignment curve maps the best member to fitnessvalue 20.0 and

the worst member to fitnessvalue]..0.Using theseexponential constants,the best 50

percent of the population has a ratioof 4.5:1in fitnessvalues. An exponential curve

isused to accentuate better performing members while assigning similarfitnessesto

pobr performers. The curve also prevents high-performing individuals from taking

over the population entirely,so the fitnessfunction isnot unduly sensitiveto cost

values. Davis [91]has also used ranked exponential fitnessassignment.

119

The immigration rate rn (number of random individuMs immigrated each gen-

eration) in the experiments ranges from 0 to 4 individualsper generation. Also, a

one-point crossover scheme isused.

The probability of child mutation is fixed at 0.005 mutations/bit. Early ex-

perimentation determined that the performance of the steady"state GA improved

when members of the population other than the current children were allowed to

mutate. This seemed most important as the population began converging, so a dy-

namic mutation rate as a function of convergence isused. The dynamic population

mutation rate isgiven by the equation

Mutations�Bit = 0.015(C- 0.5) (4.T)

(where C is the bitwise convergence percentage of the population and ranged from

0.5 to 1.0).

Again, each population member is 20 bits long. Each experiment is assigned

a population size and immigration rate, and is tested with 500 separate GA trials,

eacla with a unique random population. Each GA trial counts the number of function

evaluations until the global optimum is found. The maximum number of evaluations

allowed per trial is 50000. This is performed on all functions in the test suite.

4.3.6.2 Design of the restarted GA experiment.

For thisexperiment, the population sizesbegin at n = 14. For each function,

the population size is increased by 2 members until the GA performs worse than

with the previous population size.

The fitnessfunction firstranks each member of the sizen population. Then,

a fii_nessvalue isassigned to each member s using the equation

Fitness(s) = ezp(1.5 n - rank(s)) (4.8)
n

\

1

m 120

\

which assigns fitness values between 1.0 and 4.5. A smaller exponential constant

(1.5 instead of 3.0) is chosen for this small population GA. This provides most

of the population members with some chance to compete. However, this fitness

scheme does enforce a 4.5:1fitnessratio between the best and worst members of the

population.

The immigration rate rn in the experiments ranges from 0 to 4 individualsper

generation. Also, a one-point crossoverscheme isused. The probabilityof mutation

isset at 0.005 mutations/bit.

For functions FI - FS, the threshold convergence ratio isset 0.85. In other

words, when the population is85 percent bitwiseconverged, the two best members

are kept and random members fillthe remainder of the population. This conver-

gence ratiowas selected aftersome experimentation with values of 0.75 and 0.95. In

general,for functions FI - F5, a convergence value of 0.75 forced the GA to import

random members before good structurehad been developed, and led to an increased

number of function evaluations. A convergence value of 0.95 often required conver-

gence of members to a localoptimum which was already present in the population.

This also led to an excessivenumber of function evaluations.

For F6, a unimodal function, a convergence ratio of 0.95 provides the best

performance. For thisfunction,the population could not settleinto a localoptimum

and could continue useful schema processing to a higher degree'of convergence.

As with the steady state GA, each population member is 20 bits long. The

same experimental constraintsaxe also present.

4.3.7 Experimental Results

- The experiments provided a measure of difficulty for each of the six functions

in the suite. Figures 4.6 - 4.11 present a comparison of the performance of the steady

state GA with immigration (dashed bars) and without immigration (solid bars) on

121 •

functions F1 - F6 of the test suite. Figures 4.12 - 4.17 present a compaxison of

the performance of the restarted GA. These plots reflectthe average number of

evaluations required by the GA to find the optimum value of each function. The

number of immigrations per generation that produced these resultsis labeled in

each figure.

Based on the experimental results,both GA's easilysolved function F6 (ONE-

MAX) which isa unimodal function. This was to be expected. Functfons FI (ODD-

EVEN) and F3 (DECEPT2) proved only a littlemore difficultto the GA's. This

indicatesthat the GA does a good job assembling low-order optimal schemata into

an optimal string. Italso indicatesthat the GA can overcome some deception in its

search.

Function F4 (MIRROR) was next inlevelofdif[iculty,followedat a distance by

F5 (EIGHTAWAY). Both of these functions required the development of high-order

schemata and the consistency of low-order building blocks. The di_culty of the

GA in achieving the global optimum of each function may be due to the crossover

operation used. The strength of one-point crossover isitsabilityto assemble low-

order building blocks into optimal strings. High-order schemata have a greater

chance of being destroyed, as was demonstrated by these experiments. Perhaps the

performance of the GA's would improve using a crossover mechanism that is less

positionailybiased.

Function F2 (DECEPTI), a two-bit deceptive function,proved extremely dif-

ficultto both GA's. When compared to function F3, a one-bit deceptive function,

one can see that increased deception has a profound effecton the optimization ca-

pabilitiesof a GA.

" The next sections describe in detailthe experimental results,and examine

effectsof immigration on a Genetic Algorithm.

Figuzz 4.7:

F! - Average Number of EvsluaZiom using Stetdy St.Lte GA

1:'2.- Average Number of EvLluaZioaj ruing Stm_dy Sta_ GA

122

123

vltsz I0

I.I0

1.00

O.90

O.lO

0.60

0.$0

0.40

RiO

O0O

3n_

F3 - Average Numbe: of Ev_u,_io,,- uJlng St,e_ly Sta_e CA

_nn

inn

Flk,zLr• 4.9: F4 - Average Number of Evdu_io= _ing St_iy $t.ue GA

/I

l i f F

I I I I _-r
I i i j

124

125

I

I
t26

_.._0

l_-t,, _ : L_I_

I

6o.o0

Fi_u.e4.14:

4._

3.OO

0-_

0.00

FiC_re 4.1_:

m

Imm0
m

Imm2

,.=

i

8o.OO

F3 - Av_"4geNuml:_"of£vMuaS.ionauaimg_ GA

I

I I Imm0

I ,--i

= L -"

= i - _= _=- | = =

__-= == = = ==

i [

40.0o 6o.oo

F4 - Av=age Number ofEw_lu_io=,usingR_ GA

127

E_.s_ I0_

7_

.

4_

m

I I ImmO

4O.OO 60.nO _.00

I

I

• 128

4.3.7.1 Steady state GA

The smallest average number of evaluations for functions F1 - F5 occurred

when immigration was present. This was expected, since these functions contain

many local optima. For function F6, the steady state GA without immigration

outperformed the modified GA. Again, thiswas predicted, since F6 is a_unimodal

function.

Itisimportant to note that these figuresprovide the best resultsof the steady

state GA with immigration. The immigration rate that performed best for a func-

tion is called the _optimal_ immigration rate for that function. In general, all

immigration rates (greaterthan 0) up to and including the optimal rate resulted in

an improvement in performance over the non-modified GA.

For function FI, (Figure 4.6) the GA without immigration produced the best

resultsat a population sizeof 80 and required an average of 1688 function evaluations

to find the optimum solution.With 2 immigrations per generation at a population

size of 60, the GA required only 1352 function evaluations. Therefore, the GA

without immigration resultedin a 24.8 percent increase in search time over the GA

with immigration. In fact for each function F1 - F5, immigration resulted in a

reduction in the number of function evaluations.

Examining Figures 4.6 - 4.11, it is interesting to note that for most of these

functions, the reduction in function evaluations using immigration is largest for small

populations, and decreases as the population size increases. This indicates that the

smaller populations require the added exploration that immigration provides, while

larger populations possess sufficient exploration power.

Also, in most trials shown in these figures, the GA with immigration performed

better than a GA with 10 more population members without immigration. This

provides more evidence that immigration allows the GA to search the space of a

larger population.

129 •

Further, in FI, F3 and F5 the optimum with immigration occurs in smaller

populations than the optimum without immigration. This lends credence to the

theory that immigration allows small populations to ret_n theirselectionpressure.

This isdemonstrated furtherin Figures 4.18 - 4.29.

The histograms in Figures 4.18 - 4.29 present the resultsof 500 GA trialson

each function with and without immigration. The figures present the number of

trials(Y axis) that requirea given number of function evaluations (X axis) to find

the global optimum for a range of population sizes.The differentpopulation sizes

axe represented by solid,dashed and dotted lines. Figures 4.18, 4.20, 4.22, 4.24,

4.26, and 4.28 show resultsof the GA without immigration. Figures 4.19, 4.21,

4.23, 4.25, 4.27,and 4.29 show the resultswith optim_ immigration. For example,

in Figure 4.13,_.heGA without immigration and a population sizeof 40 (solidline)

found the optimal solutionin 200 function evaluations(X axis) in 129 out of its500

separate trialsfor function FI.

To reduce the length of the X axis,alltrialsthat require an excessivenumber

of function evaluations are grouped together at the lastpoint on the X a_ds. For

example, _n Figure 4.18, the GA with 0 immigrations and a population size of 40

had 78 points that required more than 5000 evaluationsto findthe optimal solution.

These points are referredto as _outliers._

Examining the resultsof the GA without immigration, one can see that the

peak generallyshiftsto the rightwith increasingpopulation size.This demonstrates

the decrease in selectionpressure_which inhibitsthe GA from _.ndingeasy solutions

quickly. From these figures,one also notes that increasing population sizereduces

the number of outliers.This indicatesthat an increase in population sizeincreases

the_exploration power of the GA.

Let us now compare the GA without immigration to the GA with immigration.

As shown in Figures 4.18 and 4.19, the GA with immigration has significantlyfewer

I

!

!

! 130

outliersthan the CA without immigration This isan example of how immigration

can increase exploration. Further, the peaks of Figure 4.19 occur at about the same

number of function evaluations (X axis) as the peaks in Figure 4.18. As discussed

above, ifselectionpressure was decreased by immigration, we could expect the peaks

in Figure 4.19 to be shiftedrightof the peaks in Figure 4.18. This isnot the case,so

the GA with immigration maintaina selection pressure and exploitation power.

Figures 4.20 - 4.23 present similar results. Further, for these functions the

magnitude of the peaks actually increased with immigration. This is due to the

reduction in the number of function evaluations for trials to theright of the peaks,

another indication of increased exploration.

Figures 4.24 - 4.27 the peaks occurring near the same X axis location, but

again show that immigration does not always eradicate all the outliers for various

population sizes. It does show, however, that immigration still reduces the number

of outlying trials. Since these outliers contribute heavily to the average number

of function evaluations required to find the optimum, it is clear that eliminating

outliers reduces this value.

Figures 4.28 and 4.29 show the result of function F6 with no immigrations

and with 1 immigration per generation. These experiments verified our prediction

that a steady state CA with imrmgratlon would perform poorly on a unimodal

function. As shown by the plot, immigration shifted the peak to the right and

reduced it. The average number of evaluations rose from 358 (without immigration)

to 461 (with immigration). In this case. immigration did not achieve the balance

between added evaluations and missing population structure. This indicates that

immigration is not necessary for functions in which the structure can be selected

reliably and propagated easily through the population of a steady state GA.

Overall, these experiments show that a population size between 60 and 70

131

members performs best for the steady state GA described above. To improve per-

formance, an immigration rate of 2 or 3 members per generation should be used on

functions that contain difficultlocaloptima.

4.3.7.2 Restarted GA

As with the steady state GA, the smallest average number of evaluations for

functions FI - F5 occurred when immigration was present in the'restartedGA. This

was predicted, since these functions contain many localoptima.

However, for function Fh, the unimodal function,the restarted GA with im-

migration outperformed the GA without immigration. This indicatesthat adding

random members during convergence improves the ei_ciency of a restartedGA over

both unimodal and mutirnodal functions. This phenomena isquite interesting,and

should be studied in further detail.

Again, these figuresprovide the best resultsof the restarted GA with immi-

gration. In generai, allimmigration rates (greaterthan 0) up to and including the

optimal rate resulted in an improvement in performance over the non-modified GA.

These experiments show that a population size between 16 and 20 members

performs best for the restarted GA described above. To improve performance, an

immigration rate of 2 or 3 members per generation should be used on functions

that contain dif_cult localoptima. Searching unimodal functions is more efficient

at smaller populations, and can alsobenefitfrom the effectsof immigration.

4.3.7.3 Immigration: Conclusions and recommendations

This study has examined the tradeoff between exploration and exploitation

in Genetic Algorithms. It conjectured that a GA can increase exploration power

while maintaining selectionpressure by replacing poor performing individualsin a

population with random members.

!

!

I

• 132

\

ocmutoc_

t

140.00 l

100._

°°t

0._

0.00 _ 4.OO

I
3

m

Pop40

i_"

?i&_re4.18:

I00.00

.

FI - 0 knafi_-_tio_ Pc: Gener_ion

m

Z

_attx _o3
o_o 2.oo 4.00

F_gure 4.19: FI -0.Immigr_:ions Per Geaer_io-

[]

133

I I
-,., t I

oc:=m_c_

10o.oo

9o.oo

8o.oo

7o.oo

t_oo

2o.oo

1o.oo

o.no

Fi_pn'e4-00: F?. 0 Immig:-'_tion_P= C_na-_n

m
J

m

m

7O

lw

I t I _.___=,@

Fi&nn_421: I_ -3 [ummi_r_-J P_ G--_-_/_n

134

135

o==._===

I00.00 _
90.00

_.00

(_.00

40._

30.00

20.00

IO.GO

0.00

; i !

, I I

!
t

:. T

: a L''

o I

I

_-

I

J

O.OO 2.00 4.00 6.00

Figure4.2°4:F4 -0 Immi_-_t_ Per Genen_on

\

I

Fi_zre 4.2,_: F4 - 1 Immigr&tiom Pc= Generstiou

| 136

f_._

10._

0_30 2.0O 4.OO (_0 1.00

Fi_u.re {.26: F5 - 0 Im_'_ion= P_ C,ene='_.io:

'°lio

0£0

0_0

Figure {.2T: F5 - 3 Izn=d_r_nJ P= Gen_;io:

m

137

FiT.re _8:F6 - 0 l.ma:m_&r3ommPer Ge.n_

O¢=a_cm

I(_.flO

1,44z_

l.._.Co

1oo._

Im,.oo

60.00

4O.OO

2o,,_0

O.CO

m

t J L t =io3
0._0 0.._0 1.00 l.._0 P._

Fig'tu'e ,&J9:F6 - 1 Immigra.tio,,- Per Geae_at3on

| 138

The results of the experimentation show that immigration improves the per-

formance of steady state GA's when optimizing functions that contain local optima

that are dii_cult to avoid or escape. The experiments also show that immigration

improves performance for a spectrum of functions using a restarted GA.

Although these experiments are completed, there are several recommendations

for future work. Testing immigration on a generational GA would be the next logical

step of this research. Also, a further examination of immigration versus restart would

be in order. Finally, testing functions F4 (MIRROR) and F5 (EIGHTAWAY) using

a less positionally biased crossover operator, such as uniform crossover, would prove

interesting.

In conclusion, this study demonstrates that immigration is a viable operator

for improving the e_ciency of GA's on difficult optimization problems.

4.4 Convergence of a GA using Immigration

In previous sections,the addition of the immigration operator to a Genetic

Algorithm was shown to reduce the search time required to findthe global optimum

for a given classof functions. This section develops some theoreticalunderpinnings

for the immigration operator, and proves that a GA enhanced with immigration will

converge in probabilityto the globaloptimum of a given function.

One of the main problems of the Genetic Algorithm ispremature convergence.

If the entire GA population converges to the value of a singlemember before the

globaloptimum isfound, the selectionand crossoveroperations willnever be able to

create the optimal member. In thiscase,only the mutation operator can bring new

structure to the population; however, since mutation changes just a few individual

bits,itonly explores regionslocaltothe converged population. Ifthe globaloptimum

is a large Hamming distance from where the population has converged, there is

littlechance that mutation willaid in discoveringit. In fact,there is no proof of

139 •

convergence of a GA to the global optimum of a given function.

Convergence, in the GA sense, denotes the degree of uniformity of the members

of the population. Convergence to a global optimum, in an optimization sense,

means that the sequence of _best" points generated by the search algorithm tends

to {he optimal solution. For the rest of this section, "convergence" will take on the

latterof these definitions.

By embedding the immigration operator into the GA, we can develop a proof

that shows that the modified GA willconverge in probabilityto the optimal function

value. The initialidea for the proof is based on the concept of Spacer steps, as

presented by Luenberger [65].The Spacer Step technique statesthat an algorithm

that isknown to converge to the global optimum of a cost function can be combined

with another algorithm, which may not converge to the optimum, and the resulting

algorithm willconverge to the global optimum.

To develop the proof,we willfirstpresent an algorithm that converges in prob-

abilityto the globaloptimum of a function. Then, we willillustratethe methodology

of combining thisalgorithm with the GA using Spacer Steps, and relatethisto im-

migration. The use of the Spacer Step technique servesto introduce the actual proof

of convergence, which isbased on a probabilisticargument.

First,letus consider a search algorithm calledRandom Search. Given a cost

function Q, a state vector Xi = (zt,z2,..-,z,,)at iterationi, and a prespecified

value ¢,perform the following.

Random Search

I. Generate a random vector X (rind)
P

2. If Q(X (rand)) < Q(Xi) - ¢ then set Xi+l = X (rand)-

3. Else, set Xi+l = Xi.

| 140

\

This Random Search algorithm has been shown to converge in probability to the

global minimum (optimum) of a cost function, Q [66, 67].

The technique of Spacer Steps is described by Luenberger as follows [65].

Suppose B is an algorithm which together with the descent function Q

and a solution set F, converges globally to the optimum of Q. Let us

define another algorithm C by C(X) = (Y : Q(Y) _< Q(X)). In other

words, C applied to X can give any point so long as it does not increase

the value of Q. Then, B represents the spacer step in the algorithm CB

and the overall algorithm CB converges globally to the optimum of Q.

In the above description, B is the Random Search algorithm, which is known

to converge in probability to the optimum of a function, and C is the Genetic

Algorithm. To combine Random Search and the Genetic Algorithm, an operator

must be developed that adds random members to the GA search. This operator has

been developed and is called immigration. The only other constraint is that the GA

cannot remove the current best performing member from the population. Hence,

the GA modified with immigration as presented in earlier sections forms the CB

algorithm.

The Spacer Step technique serves to illustrate the effect of adding Random

Search to the GA in the form of an immigration operator. However, the Spacer

Step technique h_ not been explicitly proven for probabilistic algorithms. Since

Random Search falls into the class of probabilistic techniques, to be mathematically

precise, we must construct another proof. This proof is similar to the one described

by Matyas [66].

- First, let us present the Random Search algorithm, combined with another

search algorithm, A. The combined algorithm searches over a discrete domain of

binary vectors.

141

Combined algorithm A and Random Search

Given a cost function Q, a state vector X| -- (zl,z2,... ,z,_) at iteration i,

where zke{O, 1}, repeat the following.

1. Generate a random vector X (r_md)

2' IfQ(X (rand})< Q(Xl) then set Xi+l - X (rand).

3. Else, set X|+I - Xi.

4. Generate a setofsearch points, (X (A)} from algorithm A and selecta member,

X (A)',of the set such that VX e {x(A)}, Q(X (A)')_ Q(X)

5. IfQ(X (A)')< Q(Xi+1) then set Xi+2 - X (A)'.

6. Else, set Xi+2 - Xi+I.

7. IfQ(Xi+2) isnot optimal, set i = i+ 2 and goto I.

Tki_ _igoritk=.willconverge in probability_o _,.,eglobal minimum (optimum)

of the cost function Q., i.ethe sequence (Xo, XI,.-. ,Xk} as k _ co willtend to

the optimal value of X over Q(.), which willbe referredto as X °pt

Theorem 4.1. The sequence (Xo, Xl, "'" ,Xk} provided by the combined algo-

rithm A and Random Search willtend to X °pt as k _ co.

Proof:

Let us firstdefinethe set G[k] as:

G[k] -- {X: Q(X) < k} (4.9)

This is the set of all points that have a cost less than k. The set G[k] depends on

the form of the function Q. we assume that Q is regular, in the sense that G[k] has

the following property:

!

!

!

\

!

! 142

Property A. (Vk)(k > Q(X°pt), G[k] isa non-empty set.

We must show that P(Xk _ X °pt) --_0 as k --.oo.

1. Let X e {0,i}" This isthe domain of the the combined search algorithm.

2. Let f("_"a)(X) be the probabilitydensity function of the discreterandom vari-

able X generating X (rand).We know that _x f('_"'_)(X)- I. We guarantee

that > 0.

3. Let f/(+al)(X) be the probability density function of the discrete random variable

X generating X (A) at iteration i + i. We know.that _x f_+a_)(X) = 1.

4. Let us define a succesful step from state X at iteration i as a step that generates

Xl such that Q(Xi) < Q(X). In other words, it is a step that reduces the cost

function, Q.

5. The probability PQ,+I(X) of a successfulstep from state X at iterationi or

i + 1 can be expressed as:

a[Q(x)I

E (4.10)
_[Q(x)I v[Q(X)]

6. By Property A, we know that G[Q(X)] is non-empty if X _ X °pt and since

(V'X)(V/) f('*"d)(X) > O, there must exist an a > 0 such that PQ,+_ (X) _> a.

7. Let us set

m = 2'_. (4.11)

In the combined search algorithm, if at least m steps are successful,it is

guaranteed that we have found the point X °pt. This is true if no step in

the combined algorithm increases the cost of the current best member from

one iterationto the next. Let us define sk as the number of successfulsteps

occuring up to and including step k.

143 •

8. Consequentlythe probabilitythat Xk _ X opt islessthan the probabilitythat

the number of successfulsteps does not exceed m, i.e.,

P(Xk _ X °pt) _<P(_k < m) (4.12)

9. Since PQ,+z(X) >_ a, for X _ X °pt, we can bound this by a binomial proba-

bilitydistribution

where k is the number of steps taken. Further, when k > 2m and a < 0.5,

ai(l --a) k-i < (rn .+1)

m+
m+lk(k-1)(k-2)'"(k-m-1)(1-a)km! < m_ lk'n(1-a)k (4.14)

rn + ik,,_(1_ a)k (4.15)
P(Xk _ X °pt) < m--T'.

I0. Consequently,

Ii. For any a > 0, itisclear that:

]

lirnk_(l- c_)k-- 0 (4.16)

12. Therefore, P(Xk # X °pt) _ 0 as k _ o_.

Q.E.D.

Of course, the algorithm A is the Genetic Algorithm, under the guaxantee

that is does not remove the best current member at any step. It is easy to see

that thisproof can be extended to situationsin which the immigration step occurs

infrequently.

!

| 144

4.5 Representation of Nodes for Genetic Optimization

The Genetic Algorithm has been shown to be adept at optimizing difficult

cost functions, such as the energy function for the ARM. Each member of the GA

is represented by a.string of binary values. For the ARM, the binary member of the

GA population must map to the output nodes of the network, because the purpose of

associative recall is to find the correct set of asserted output nodes that minimizes

the energy of the network for the given asserted input nodes. In other words,

the population maintained by the GA represents different configurations of output

nodes, and the fitness of each member reflects the energy for that configuration,

when asserted on the network.

The issue of representation involves the mapping of a member of the GA

population onto the output nodes of the ARM. By choosing the appropriate rep-

resentation for the output nodes, it is possible to reduce the search time of the

GA.

For exaznple, Cazuana and Schaffer [92] fred that using a Gray code represen-

tation for integer or real population members outperforms straight binary coding in

numerical optimization problems. The use of a Gray code allows nearby integer or

real search points to have similar representations as members of the GA population.

The similar representations are characterized by having small Hamming distances.

Under binary coding, nearby search points may have vastly different codings in the

GA population. This prevents the GA from developing a sense of "continuity" in

the domain of the problem and hinders local search. Hollstein [93] also advocates

the use of Gray encodings for such problems.

Goldberg [71] offers two basic principles for choosing a. GA representation.

These are the Principle of Meaningful Building Blocks and the Principle of Minimal

Alphabets.

The Principle of Meaningful Building Blocks is stated as follows.

145 •

The user should selecta coding so that short,low-order

schemata are relevantto the underlying problem and relativelyunrelated

to schemata over other fixed positions.

This prindple is based on the one-point crossover operation, which has a strong

positionalbias towards maintaining short,low-order building blocks.

The Principle of"Minimal Alphabets isstated as follows.

The user should selectthe smallest alphabet that permits a natural ex-

pression of the problem.

This principle,Goldberg explains,isbased on the idea that smaller alphabets provide

greater numbers of schemata per bit of information. The lower limitof alphabets is

the binary representation used in most Genetic Algorithms.

With thisinformation, we can develop a suitableGA representationforoutput

nodes of the ARM.

Recall from Chapter 3 that the structureof the specificrules provided to the

ARM is

ACTOR ACTION OBJI OBJ2 ... OBJ._ --,

OBJI STATE OBJ..

The firstpart of the ruleiscalledthe robotic action. The second part of the

ruleisthe effect.The ARM isdesigned such that itisprovided with a desired effect

as input and recallsa robotic action as output. Therefore, the GA must represent

the nodes corresponding to

ACTOR ACTION OBJI OBJ2OBJ_

Based on the design of the ARM, only" one ACTOR node, one ACTION node,

and one of each OBJ= node can be asserted together, to maintain the structure of the

rule grammar. This is a relatively sparse representation, given the number of output

]

• 146

nodes in the network. If each node was directly mapped to a single bit in each GA

member, and each output level was a nodes long, each member would have length

equivalent to the number of output nodes in the ARM, which is n(rn + 2), leading

to a search space of 2"(_+2) points. Further, since the representation allows only

one symbol to be asserted on each level of the ARM, most of the GA search would

be spent removing population members (created through crossover and mutation)

that violatethis constraint.

A better representation isto binary encode the symbols. Each output levelof

n nodes requiresat lea.stLlog2nJ÷ I bitsto representthe asserted node at that level.

The size of a population member is (Llog2rzJ+ 1)(m + 2) bits under this scheme,

which isa large reduction in the search space.

The representation stillsuffers,because the symbols possess no "semantic _

information. For example, in [92],Gray coding is shown to be superior to binary

coding because the Gray representation explicitlyencodes the concept of domain

continuity into each GA member. In other words, members that are near in a

Hamming distance sense perform similarlyon the cost function in question. Thus,

the Gray coding adds semantic information to the representationof the search point.

This same idea.of coding semantic information into each GA member is at

the crux of the Principle of Meaningful Building Blocks. Similar short, low-order

schemata should possess similarmeanings when mapped from the function domain

onto the binary representation. In this case, the function domain is the set of

symbols in the ARM.

Antoinesse and Keller [86]examine coding higher levelrepresentations (similar

to ARM symbols) into binary strings.In their representation of a symbol, each bit

contains semantic information about the symbol, such as the classof objects that

the symbol belongs to, or features of the object that the symbol represents. In

this way, similar objects in the real world possess similar representations in the

147

GA domain. Again, if similar symbols possess similar representations, the GA

can effectively search for _features" that perform well on the target function, by

promoting schemata that have these features present. It is important to note that

for the study in [86], as well as for the ARM, the symbol representation is context-

dependent, i.e., depending on the objects in the current world, the representation

changes.

For the ARM system, a similar strategy is adopted. Eacl_ bit, or group of

bits in the representation of a symbol encodes some real-world semantic information

about the ACTOR, and OBJs symbols. Semantic information that may be encoded

includes:

I. Major class

2. Minor class

3. Actor significantfeatures(weak vs. strong,dextrous vs. clumsy, human vs.

machine)

4. Object significantfeatures (heavy vs. light,big vs. small,active vs. inert)

It is a littlemore dii_cult to determine similar features between actions. How-

ever, actions that produce the same STATE symbol in the rule effectshould have

encodings th_ axe near in a Hamming distance sense.

An example of the codings for a set of ACTOR nodes is presented in Figure

4.30. Notice that the first bits of the code are devoted to semantic information,

while the last bits contain labels to distinguish between semantically similar actors.

This example demonstrates that similar symbols have meaningful building blocks,

and are nearby, in a Hamming distance sense.

\

l

|

! 148

BITS:

4

class

3

4-3:00 = <dex>, 01 = <pos>, I0 = <tram>

2:0 = light. 1 = heavy

ENCODING:

00000: EVA

00100: GDMS

01000: SRMS

01100: ATD

I0000: MMU

10100: OMV

00001: JP.MS

00101: MRMS

0100l: SSRMS

01101: APS

I0001: CErA

10101: ORBITER

.,a'obot>

[
2

I
1

label

00010: FTS

10010: MT

0

00011: SPDM

Figure 4.30: Encoding of Actor nodes for the GA

149 •

4.6 Finding Sets of High POE Robotic Actions

The Genetic Algorithm possess the capability of finding a high POE robotic

action given a desired effect. It may be the case, however, that the found robotic

action cannot be used due to other planning constraints, such as resource utilization.

It would be very helpful, therefore, if the GA could produce a set of robotic actions,

each of which possesses a high POE value for the given effect. If one robotic action

could not be used, another would be selected from this set and applied to the

planning problem.

Finding sets of high POE robotic actions requires the GA to find multiple

minima in the energy function of the ARM. Since the GA tends to converge to a

uniform population as the search progress, this requirement seems contradictory to

the nature of the GA. Several researchers, however, have examined the problem of

multiple solutions, or speciation, using a GA.

To increase the diversity of a GA population and allow for speciation, DeJong

[72] introduces a crowding scheme to the GA. In this scheme, existing members are

replaced in the population based on their similarity with other population members.

This replacement occurs when children are generated through crossover. It is shown

that as the search progressed, stable species, or function optima, are found using

this technique.

Goldberg et al. [94, 95] develop a sharing function to promote speciation and

find multiple optima. This research uses the distance between the mapped GA

members to determine the amount of fitness like members should "share." The

technique follows:

Let

d,j = d(Xi, Xj)

where d is a distance measure and Xi and Xj are two population members.

define a sharing function sh with the following three properties.

We

.|

, 150

I. 0 < sh(di¢) < I for all d_,.

2. sh(O)= I.

3. limd,,__ sh(d_ i) = 0.

Many sharing functions can be used, for example

t- (_--=-)",d_j< _,h_,,
sh(d,i) = "_"_'" (4.18)

O, otherwise

where tr, a_,, and r/are positive constants. Given a distance metric, a sharing func-

tion, and the fitness of a member i by f,, the shared fitness, f" of member i is given

by:

where

f'-- f_, if rn_>O (4.19)
mi

mi = _ sh(dii) (4.20)
;

In effect, this algorithm reduces the fitness of each member which is similar to

other members in the population. This allows diversification, because new members

can compete for selection. The research demonstrated the ability to find multiple

peaks in various trigonometric functions.

For the associative recall in the ARM, a technique similar to Goldberg's sharing

function is used to find multiple robotic actions. Since neighboring solutions in the

ARM may each represent high POE robotic actions, only identical members should

be penalized by a reduction in fitness. The penalty method we use is as follows.

1. Create sets of identical members.

2. Enumerate the members of each set j by assigning each member an index i,

0 < i < Satsize(j).

3. For each set j do

151 •

(a) Since a_l members in set j are identical,they possess identicalfitness

values. Let fj be the fitnessof each member in set j.

(b) For each member i in set 3",assign i a new fitness,f_ - #_fj.

If p <_ l, the fitnessesof identica.lmembers decay exponentially. In other

words, the firstmember of a set of identicalmembers in the population willhave

itsassigned fitnessvalue,f_. The second member of the identicalset willhave/_fi

as a fitnessvalue. The third member willhave l_2fias a fitnessvalue, etc. Of

course, unique members willnot have theirfitnessvalues altered by this method.

This technique allows diversityand speciation,since itinhibitsa uniform population

from occurring.

The case study in Chapter 6 demonstrates the effectivenessof thismethod at

finding multiple robotic actions for a given effect.

4.7 Contributions and Conclusions

This chapter detailed the associativerecalltechnique forthe ARM. The main

contributions of thischapter areas follows.

I. The development of the immigration operator for Genetic Algorithms and

the demonstration that immigration improves the performance of a GA on

functions that possess difficultlocaloptima.

2. The ?.roofthat a GA combined with the immigration operator willconverge

in probability to the global optimum of a cost function.

The nature of the energy function of the ARM was described,and was shown to

be _ighly nonlinear and discrete.Based on thisinformation, the Genetic Algorithm

and Simulated Annealing were tested as possibleoptimization functions to perform

associativerecallon the ARM. Experimental resultsin this chapter showed that

the GA can perform as leastas well as Simulated Annealing when searching for the

I

I

! 152

minimum energy of a Boltzrnann Machine. Based on thisstudy, the GA was chosen

as the associativerecalltechnique for the ARM.

The immigration operator was introduced and examined in terms of the trade-

off between exploration and exploitation in a Genetic Algorithm. A test suite of

functions were defined to examine this tradeoff.The functions were characterized

by di_cult local optima. Two types of GAs were tested with and without imm_-

g'rationon the test suite Steady State and Restarted. It was shown that a GA

with immigration reduces the number of function evaluations required to find the

global minimum of a cost function,and alsoreducesthe number ofoutliers.Further

research using a generational GA was recommended.

The concept of convergence was discussed. Emphasis was placed on the dif-

ference between bitwise convergence of the population and convergence to a global

optimum. The GA with immigration was shown to converge in probability to the

global optimum of a cost function.

The issue of representationof ARM symbols in a GA member was discussed.

It was decided to encode semantic information in the symbols to allow the GA to

exploit the underlying structure of the members. Finally,a method for finding sets

of high POE robotic actions for a given effectwas outlined. The technique chosen

issimilar to those in the GA literatureand isbased on the concept of speciation.

\

1

m

CHAPTER s

A BOLTZMANN MACHINE FOR THE ORGANIZATION OF

INTELLIGENT MACHINES

The purpose of this chapter is to relatethe design of the ARM to the concept of

IntelligentMachines. In particular,the ARM can form the Organization levelof

the IntelligentMachine, as defined by Saridis. Much of thischapter has appeared

in[16].

Since 1977 Saridishas been developing a novel approach, defined as Hierarchi-

ca/IntelligentControl, designed to organize, coordinate and execute anthropomor-

phic tasks by a machine with minimum interactionwith a human operator. This

approach utilizesanalytic (probabilistic)models to describe and control the various

functions of the IntelligentMachine structured by the intuitivelydefined principle

of Increasing Precision with Decreasing intelligence(IPD[) as presented in [96].

This principle,which resembles the managerial structure oforganizational sys-

tems [97],has been derived on an analytic basis by Saridis [98].The impact of this

work is in the engineering design of intelligentrobots, since it provides analytic

techniques for universalproduction (blueprints)of such machines.

The outlineof the chapter follows.In section5.1 some rnathematica/theory of

the IntelligentMachine isoutlined. In section5.2,some definitionsof the variables

associated with the principle, such as Machine Intelligence, Machine Knowledge,

and Precision are made [18]. Section 5.3 describes the procedure to establish a

Boltzmann machine, such as the ARM, on an analytic basis as the Organization

level. Section 5.4 concludes this chapter.

15:3

154

5.1 The Mathematical Theory of Intelligent Controls

To design intelligentmachines that require theiroperation control system to

possess intelligentfunctions such as simultaneous utilizationof a memory, learn-

ing,or multileveldecision making in response to "fuzzy" or qualitativecommands,

The theory of IntelligentControls has been developed by Saridis [99,13]. It uti-

lizesthe resultsof cognitivesystems research effectivelywith various mathematical

programming control techniques [100].

The theory of IntelligentControl systems, proposed by Saridis[12]combines

high level decision making with advanced mathematical modeling and synthesis

techniques of system theory with linguisticmethods of dealing with imprecise or in-

complete information. This produces a unifiedapproach suitableforthe engineering

needs of the future. The theory,may be thought of as the resultof the intersection

of the three major disciplinesof ArtificialIntelligence,Operations Research, and

Control Theory. This research isaimed to establishIntelligentControls as an engi-

neering discipline,and itplays a centralroleinthe design of IntelligentAutonomous

Systems.

The control intelligenceishierarchicallydistributedaccording to the Principle

of Increasing Precision with Decreasing Intelligence (IPDI), e,rident in all hierarchi-

cal management systems. They are composed of three basic levelsof controls even

though each levelmay contain more than one layerof tree-structuredfunctions as

shown in Figure 5.1. These levelsare:

I. The Organization level.

2. The Coordination level.

3. The Execution level.
P

The Organization level, as shown in Figure 5.2, is intended to perform such

operations as planning and high level decision making from long term memories. It

may require high level information processing such as the knowledge based systems

I

| t55

in

m

m

i i

....

.......:....t......................t
I,-t l.-I

Figure 5.1: Intelligent Machine Hierarchy

encountered in Artificial Intelligence. These require large quantities of knowledge

processing but require little or no precision.

The functions involved in the upper levels of an Intelligent Machine are imitat-

ing functions of human behavior and may be treated as elements of knowledge-based

systems. Actually, the activities of planning, decision making, learning, data storage

and retrieval, task coordination, etc. may be thought of as knowledge handling and

management. Therefore, the flow of knowledge in an Intelligent Machine may be

considered as the key variable of such a system.

Knowledge flow in an Intelligent Machine's organization level is present in the

following high level activities.

1. Data Handling and Management.

2. Planning and Decision Making performed by the central processing units.

" 3. Sensing and Data Acquisition obtained through peripheral devices.

4. Formal Languages which define the software.

The uncertainty present in the knowledge of the Organization level can be

156

Figure 5.2: Organization Level of IntelligentMachine

represented by an analytic function and serves as a measure of the performance

of this level at differentactivities.Saridis has chosen the entropy function as an

analytic measure to represent the uncertainty [12]of the Organization level.

The Coordination levelis an intermediate structure serving as an interface

between the organization and execution level.Itsperformance isalso measured by

an entropy function.

The Coordination levelisinvolved with coordination of actions,decision mak-

ing and learning on a short term memory, e.g.,a buffer.As input, the Coordination

levelreceiveshigh levelplanning steps from the Organization level.Each step in the

plan dictates an action that must be performed in the environment of the Intelligent

Machine. The Coordination levelmaps the high levelplan onto the environment

by selectingdetailed actions that have a minimum entropy of execution. These en-

tropies axe derived from subjective probabilitiesprovided initiallyand updated by

feedback from the Execution level.The detailedactions are then provided to the

Execution levelfor execution in the environment.

l

|

i

| 157

Recent work in the Coordination level includes communication protocols for-

mulated by Wang [101,102] and a collision avoidance coordinator for mobile robots,

developed by Kyria.kopoulos [I03].

The Ezecution /ere/ executes the appropriate actions in the environment, which

are represented as control functions at this level in the Intelligent Machine hierarchy.

Its performance measure can also be expressed as a_a entropy, thus unifying the

performance measures of an Intelligent Machine.

Optimal control theory utilizes a non-negative functional of the states of a sys-

tem in the state space, and a specific control from the set of all admissible controls,to

define the performance measure for some initial conditions (x(t), t), representing a

generalized energy function. Minimization of the energy functional yields the desired

control law for the system.

For an appropriate density function p(z, u(x, t), t) satisfying 2aynes' Maximum

entropy principle [104], it was shown by Saridis that the entropy It(u) for a particular

control action u(x, t) is equivalent to the expected energy or cost functional of the

system [98]. Therefore, minimization of the entropy fI(u) yields the optimal control

law of the systems. Therefore, since the actions executed by the Execution level are

represented as control functions, their performance can be evaluated by an entropy

measure.

Since all levels of a hierarchical intelligent control system can be measured

by entropies and their rates, the optimal operation of an "intelligent machine" can

be obtained through the solution of mathematical programming problems. Since

entropy satisfies the additive property, this programming problem must minimize

the total entropy of activities in the Intelligent Machine.

P

The various aspects of the theory of hierarchically intelligent controls are sum-

marized by Saridis as follows [1.-3].

158 •

The theory of intelligentmachines may be postulated as the matherr_t-

ic_lproblem of finding the right sequence of decisionsand controls for

a system structured according to the principleof increasing precision

with decreasing intelligence(constraint)such that itminimizes itstotal

entropy.

The above analytic formulation of the "IntelligentMachine problem _ as a

hierarchicallyintelligentcontrolproblem isbased on the use ofentropy as a measure

of performance at allthe levelsof the hierarchy.Ithas many advantages because of

the tree-likestructureof the decision making process,and brings together functions

that belong to a varietyof disciplines.

5.2 Knowledge Flow and the Principle of IPDI

The general concepts of IntelligentControl Systems are the fundamental no-

tions of Machine Intelligence,Machine Knowledge, its Rate and Precision. The

followingdefinitionsare made by Saxidisto elucidatethese concepts.

Definition 5.1. Machine Knowledge is defined to be the structured information

acquired and applied to remove ignorance or uncertainty about a specifictask per-

taining to the IntelligentMachine.

It

Definition 5.2. Rate of Machine Knowledge is the flow of knowledge through an

IntelligentMachine.

. InteLligence is defined by the American Heritage Dictionary of the English

Language [105] as: Intelligence is the capacity to acquire and apply knowledge. In

terms of Machine Intelligence, this definition is modified to yield:

| 159

Definition 5.3. Machine Intelligence (MI) is the set of actions which operates on

a database (DB) of events to produce flow of knowledge (R).

One may directly apply the Law of Partition of Information Rates of Conant

[106] to analyze the functions of the intelligence within the activities of an Intelligent

Control System.

Definition 5.4. Imprecision is the uncertainty of execution of the various tasks of

the Intelligent Machine.

On the other hand, one may define Precision as follows:

Definition 5.5. Precision is the complement of Imprecision, and represents the com-

plexity of a process.

Analytically, Saxidis summarizes the relationships as follows.

Knowledge (K) representing a type of information may be represented as

K = -_- In{P(K)} = (Energy) (5.1)

where P(K) is the probability density of knowledge and a is a probability

normalizing constant.

From (5.1) the probability density function P(K) satisfies the following ex-

pression in agreement with Jayues' principle of Maximum Entropy [104]:

P(K) = e-°-t<; a = In e-t"dz (5.2)

The Rate of Knowledge R which is the main variable of an Intelligent Machine

with discrete states is

160 •

dK

R = d-"i"= (5.3)

where t represents time.

It was intuitivelythought by Saridisthat the Rate of Knowledge must satisfy

the followingrelationwhich may be thought ofexpressing the principleofIncreasing

Precisionwith Decreasing Intelligence[13].

(MI): (DB) _ (R) (5.4)

A special case is when R is fixed, machine intelligence is largest for a smaller

data base. This is in agreement with Vamos' theory of Metalanguages [107]. It is

interesting to notice the resemblance of this entropy formulation of the Intelligent

Control Problem with the e-entropy formulation of the metric theory of complexity

originated by Kolomogorov [108] and applied to system theory by Za,'nes [109].

Bo_h methods imply that an increase in knowledge (feedback) reduces the amount

of entropy (e-entropy) which measures the uncertainty involved with the system.

Therefore, the analytic formulation of the above principle has been derived by

Saridis from simple probabilistic relations among the Rate of Knowledge, Machine

Intelligence and the Database of Knowledge. The entropies of the various functions

come naturally into the picture as a measure of their activities.

1

5.3 The Organization Level as a Boltzmann Machine.

In the current literature of parallel architectures for Machine Intelligence, the

Boltzmaan Machine represents a powerful, neural network based architecture that

allows efficient searches to optimally obtain the combination of certain input vari-

ables and constraints [55]. The formulation of the ARM demonstrates this capability.

The Boltzmann architecture may be interpreted as the machine that searches

for the optimal interconnection of several nodes (neurons) representing different

| 161

primitive events to produce a string defining an optimal task. Such a device may

prove extremely useful for the design of the Organization level of an Intelligent

Machine [18].

One of the main functions of the Organization level is to construct a set of

primitive events which represent an activity to be executed by the InteLligent Ma-

chine in order to achieve a desired goal. Primitive events consist of actors, actions

and objects which combine to form the robotic action. The set of primitive events

which form the activity must also minimize the uncertainty of achieving the goal.

Mapping these requirements onto a Boltzmann Machine, we can define the following

sets of nodes:

1. Input nodes that represent a desired goal or subgoal.

2. Output nodes that represent primitive events which must be executed by the

Intelligent Machine to satisfy the input goal.

3. Hidden nodes which allow the development of complex interactions between

input and output nodes.

As we can see, this is structurally identical to the model of the ARM.

We associate the state of each node with a binary random variable ni = {0, 1 },

with a priori probabilities p(ni = 1) = pi . p(n_ = O) -- 1 -pl, where 1 represents

the assertion of node i, and 0 indicates node i is not asserted. For the standard

definition of the Boltzmann Machine, and the ARM model pi - 0.5. The state

vector of the network, N = (nl,n2,...,ni....,n,,,) is an ordered set of O's and l's

describing the state of the machine in terms of its nodes, for an rn node machine.

It i8 possible to extract the string of primitive events representing the optimal task

by examining the state vector of the output nodes in the network in steady state

response to a given input.

162

The standard formulation of the Boltzmann Machine uses energy as a cost

function which is minimized to find the optimal state of the machine. However in

(5.i),knowledge isdefined as a form of energy. What energy represents,therefore,

isthe ignorance possessed in the knowledge about a particularmachine state N. As

the energy increases,the ignorance increasesas well. Further, one can analytically

represent the probabilitythat a correct set of primitive events has been found for a

particularinput goal based on the knowledge in the machine about the input-output

pair. Finally,the uncertainty of the input-output pattern N can be computed as an

entropy function.

I

5.4 Entropy as a Measure of Uncertainty

Entropy isused as a measure of uncertainty in the IntelligentMachine. The en-

tropy manifests itselfin the interactionand interconnection of nodes in the network.

Let us begin by definingthe ignorance of knowledge about a particularmachine state

N by the energy function

(5.s)

This is identical to the energy function of the ARM, as given in (3.10).

The probability that the output primitive event nodes axe correct given the

input is a function of the ignorance in the knowledge about state N and is given by

1

P(K(N)) = ezp(-a - _ _ __, wiininl) (5.6)
i j

where

.o wij is the interconnection weight between nodes i and j

• Wii = 0

• a is a probability normalizing factor.

i

, 163

We now wish to formulate a measure of uncertainty for the machine. A stan-

dard entropy formulation is given by:

 r(x) = - P(x)zn{P(x)} (5.7)
x

Let us adapt this measure to reflect the uncertainty that the machine produces as

output the correct set of primitive events that achieve a desired goal. The adapted

measure has two states,

1. a correct set of primative events,

2. an incorrect set of primative events.

This yields a two state entropy measure for machine state N, where P(K(N)) is the

probability that the output is correct (state 1), and 1 - P(K(IN)) is the probability

that the output is incorrect (state 2).

The uncertainty that the output of the Boltzmann Machine is correct is given

by:

H(K(N)) -" -P(K(N))In(P(K(N))} -(I - P(K(N)))In((1 - P(K(N)))} (5.8)

1
The entropy is maximum when the each of the associated probabilities P(K) = ._.

Maximum entropy implies complete uncertainty in a decision and reflects lack of

preference on a correct string configuration. By bounding P(K) from below by _,

one obtains a unique minimization of the entropy corresponding to the most certain

sequence of events possible which achieve a given goal.

Further, by using the formulation provided above for entropy, one can minimize

the uncertainty of the Organization level in producing a string of primitive events

which achieve a desired task by finding a configuration of node states which minimize

the energy in the Boltzmann Machine. Therefore, using this measure, one can find

a minimum entropy' output by minimizing the energy in the machine.

164 •

S.5 Contributions and Conclusions

The main contribution of this chapter was the reformulation of the Organiza-

tion level of the Intelligent Machine as a Boltzmaan Machine, and to demonstrate

that the ARM could function in this capacity. The chapter also provided some

background on Intelligent Machines, and presented the fundamental definitions. It

was shown that the knowledge of the Organization level could be represented by

an energy function. Also, finding the set of primitive events which minimizes the

entropy for a given input was shown to correspond to to a minimum energy search

of the network.

Equivalence between the Organization level and the ARM allows the former

to use the ARM training procedure to develop connection weights. This indicates

that the Organization level can be used to predict entropy values for untested com-

binations of primitive events. Also, any optimization technique used for associative

recall in the ARM can be used to search the Organization level and find an activity,

or set of activities which minimizes the entropy for a given input goal.

i

!

|

CHAPTER 6

A CASE STUDY

To demonstrate the capabilitiesof the Associative Rule Memory, thischapter

presents a case study that employs the ARM for a typicalrobotic application. This

case study isbased upon the Task Anal_/sisMethodolog_/(TAM) for the NASA Flight.

Telerobotic Servicer [2].Section 6.1 of thischapter broadly describes the TAM. In

section 6.2,we outline the case study plan and provide measures to evaluate the

performance of the ARM. Section 6.3 begins development of the ARM for the case

study by presenting the target world model, the general and specificrules, and

the resultingnetwork model. Section 6.4 detailsthe training sets that form the

experiments for the case study. Also, the resultsof trdning axe presented and

analyzed. Section 6.5 describes the resultsof associativerecall,and the optimal

planning steps. Section 6.6 reviews the results,and concludes thischapter.

6.1 The Task Analysis Methodology"

As described in [2],the TAM:

• Provides a method to develop operational scenaxiosfor teleroboticsystems.

• Provides a method to analyze and evaluate teleroboticsystems task perfor-

mance capabilities.

• Provides a common language for space station teleroboticusers (i.e.,opera-

tionalplanners, hardware and software developers,and program managers).

• Provides a method to optimize teleroboticoperations on the Space Station

Freedom by assessing task scenarios and recommending task and hardware

design requirements.

165

166 I

• Provides a standard format for inputting operational scenarios to off-line plan-

ning software.

To provide these capabilities, the TAM details:

• A set of tasks (actions) that can be accomplished by work systems (agents) in

the Space Station environment. These tasks are arranged hierarchically with

increasing levels of detail.

• A set of work systems (agents) and their capabilities.

• A set of objects in the world model on which actions are performed.

Each action in the TAM can be divided into a set of more detailed sub-actions

to create plans with different levels of abstraction. Similarly, the set of effects of

robotic actions on the world model can be represented in several levels of detail.

These tiersof abstraction are called the Task Analysis Hierarchy (TAH). The

TAM planning process, described below, is repeated for each levelof detailin the

TAH.

A flowchart detailingthe TAM planning process is presented in Figure 6.1.

The planning process isdescribed using the terminology we have developed in this

thesis.The description follows.

I. Task. Statement. A world model goal is provided as input to the planning

process.

2. Task Decomposition. The world model goal is decomposed into a more de-

tailed set of effects that must take place in the world to achieve that goal.

3. Task Scripting. Using available agents, a set of robotic actions are defined

that can accomplish each of the effects.

! 167

\

4. Task Modeling and Assessment. Upon completion of a suitable plan, robotic

actions are modeled using a mockup of the world and performance is assessed.

Constraints and modifications are outlined, if necessary, and replanning oc-

curs.

Examining the capabilities and features of the TAM planning process, we see

that it is very similar to an interactive planning system, but also embodies features

of automatic planners, such as Rokey's TIPS planner [11]. For example, step 2 of

the TAM planning process is similar to level 1 of the TIPS planner, while step 3 is

contained within level 2 of the TIPS planner.

A feature of the Space Station world model, as described by the TAM doc-

ument, is the redundancy of robotic actions. In other words, a particular desired

effect, provided by the Task Decomposition process, can be achieved by several (per-

haps many) different robotic actions• To limit the number of possible robotic action

alternatives for a given desired effect, the Task Scripting process must efficiently

determine a set of robotic actions that achieve the desired effect and optimize some

performance criteria. As we can see, this requires the same functionality provided by

the ARM model where the performance criteria is the POE value of a robotic action

for a desired effect. This case study, therefore, models step 3 of the TAM planning

process, Task Scripting, that requires some of the capabilities that are provided by

the ARM.

168

Work $ys.

Idem.

Task Scripting

Task

Decomposition

I
R_defini_on

t
Task Modeling

Task Assessment I

!

I

T
Compare and evaluate

p_ss

I

l

Figure 6.1: Task Analysis Methodology Flowchart

I 169

6.2 Case Study Goal

To test the functionality of the ARM model, it is applied to a typical Space

Station task as described in the TAM documentation. The task named "ORU

CHANGEOUT" has been adapted for this case study. In this scenario, the Orbital

Replacement Unit, which is attached to the Truss structure, must be deactivated,

moved to the Mobile Servicing Center and stowed. The steps follow.

Goal: ORU CHANGEOUT

1. The ORU is deactivated.

2. The ORU is detached from the Truss.

3. The ORU is attached to a carrier.

4. The carrier is moved to the Mobile Servicing Center.

5. The ORU is detached from the carrier.

6. The ORU is attached to the Mobile Servicing Center.

7. The ORU is stowed at the Mobile Servicing Center.

It is the responsibility of the ARM to find high POE robotic actions that

achieve each of the steps in the above plan. This plan will be called the goal plan

for the rest of this chapter.

Using this sample plan, the ARM will be evaluated with several criteria:

1. The ability to represent general rules.

2. The ability to accurately store specific rules and corresponding POE values

from the training set.

3. The ability to predict POE values for untested specific rules.

170

4. The speed of associativerecallof the optimal robotic action for each desired

effectof the plan.

5. The speed of associativerecallof a set of near-optimal robotic actions foreach

desired effectof the plan.

6.3 Design of the Case Study using the Task Analysis Methodology

To determine a set of robotic actions that accomplish the goal plan, we must

firstdevelop the ARM model. This isaccomplished as follows:

I. Determine the target world model.

2. Define the symbol classesfor agents in the world model.

3. Develop a set of general rules.

4. Create a suitable ARM network from the symbols, symbol classesand general

rules.

6.3.1 The world model and symbol classes

This study focuseson the Teleroboticlevelof the TAH. This levelpossessesthe

required degree of abstraction within which the ARM issuited to function. From

thislevel,a world model isdefined consistingof actors and objects. The actors are

telerobotsand consist of

• Dextrous Manipulators

• Positioners

• Transporters

The objects in the world consistof

| IT1

• Telerobots

• Tools

• Carriers and Platforms

• Sites

• Other parts

A full breakdown of the symbol classes is presented in Appendix B along

with the set of symbols that fit in each class. The agents used in this study are a

combination of agents from the TAM document, and agents defined specifically for

this study. The extra agents are added to show the full capabilities of the ARM by

increasing the redundancy of the environment. The classification is accomplished

heuristically by grouping agents together that are similax. Other classifications may

also be possible and valid.

6.3.2 A general rule grammar

The general rule grammar is designed to represent a high degree of robotic

action functionality. It includes the following capabilities:

1. The ability for two robots to work together to accomplish a task.

2. The ability for a tool to be used in accomplishing a task.

The general rule grammar is defined as

where

ACTOR ACTION OBJo OBJI SLAVE TOOL

OBJo STATE OBJl (6.1)

• ACTOR is limited to class < robot >.

172

• ACTION is an action symbol.

• OBJn is the direct object class and is limited to < object >.

• OBJ; is the indirect object class and is limited to < object >.

• SLAVE is a secondary robot and is limited to Class < robot >.

• TOOL is a limited to class < tools >.

• STATE is a state symbol.

Using this structure, the general rules generated from the TAM documentation

are presented in Figures 6.2 and 6.3.

Following the conventions outlined in Chapter 3, the direct object of the

robotic action must be the same as the direct object of the desired effect. Sim-

ilarly, the indirect object of the robotic action must be the same symbol as the

indirect object in the desired effect.

The general rules provide a set of actions, many of which lead to the same state

in the rule effect. Different action syr....bols that lead to the same effect represent

real-world, alternative methods for achieving the state. As many of these rules show,

different methods often require different sets of SLAVEs or TOOLs to achieve the

desired effect.

Some of the actions also lead to multiple effects, such as HOLD and

RETRACT. This is to demonstrate that the ARM is capable of representing mul-

tiple effects of general rules.

Also, the agent symbols include a BLANK value, which can be used when

the-robotic action does not require an OBJ symbol to be successful. For example,

although the action STOW allows a < fiz > symbol, a fixturing tool may be

unnecessary to achieve a high POE value. If this is the case, the < fix > variable

!

!
173

•

•

•

de_ >

object

dec >

object

dex >

• <

<

• <

<

o<

<

• <

< object

• <dex>

< object

• < dex >

< object

• < dec >

< object

• <dex>

< object

• < dec >

"-"'4

< object

dec >

object

dex >

object

dex >

object

ACTUATE < object > NULL NULL < active > ---,

> IS- ACTIVATED NULL

ATTACH

> IS-ATTACHED-TO <object>

CONNECT < object > < object > NULL

> IS-ATTACHED-TO <object>

DEACTIVATE < object > NULL < dexpos > < active >

<object> <object> < dezpos > NULL -.

< fiz >*

> IS- DEACTIVATED NULL

DEACTUATE < object > NULL NULL < active >

> IS- DEACTIVATED NULL

DEPLOY < object > NULL < dec > < active >

> IS- ACTIVATED NULL.

DEPLOY <object> <object> <dec> <active> --_

> IS-AT <object >.

DETACH < object > < object > < pos > NULL ---,

> IS- DETACHED - FROM < object >

DISCO:VNECT < object > < object > NULL < de fix >

> IS- DETACHED- FROM < object >

FASTEN <object> <object> < dexpos > <fix>

> IS-ATTACHED-TO <object>

HOLD <object > < object > < dexpos > <fix>

> IS-AT <object>.

HOLD <object> <object> < dezpos > <fix>

> IS-ATTACHED-TO <object>.

Figure 6.2: Case Study General Rules

174

I

s <dez> OPERATE <object> NULL <dezpos> <active> ---,

< object > IS- ACTIVATED NULL.

• < dexpos > PLACE < object > < object > < dezpos > NULL ---,

<object> IS-AT <object>.

s < robot > POSITION < objed > < object > NULL NULL ---*

<object> IS-AT <object>.

• <robot> RETRACT <object> NULL <dezpos> <active> -,

< object > IS- DEACTIVATED NULL

• < robot > RETRACT < object > < object > <dezpo$ > < active >
,-.+

<object> IS-AT <object>

• <robot> STOW <object> <object> <dez> <fix> --,

< object > IS - STOWED - AT < object >

• < trans > TRANSPORT < object > < object > NULL NULL ---,

<object> IS-AT <object>

• <dex > UNFASTEN <object > < object > <dezpos > <de fix>

< object > IS - DETACHED - FROM < object >

• <robot> UNSTOW <object > <object> <dex> <de fix> ---,

<object> IS - UNSTOWED - TO <object>

Figure 6.3: Case Study General Rules, cont'd.

I

I

m

! 175

would be instantiated with the BLANK symbol during recall,to develop a high

POE robotic action.

6.3.3 The ARM network

Given the structure of the general rules,the ARM network is comprised of

three input levelsand six output levels.Tlle input levelsare

1. OBJo

2. STATE

3.OBJ,

The output levels are

1. ACTOR

2. ACTION

3. OBJD

4. oBJ,

5. SLAVE

6. TOOL

From the discussion in Chapter 3, one node isused to represent each symbol

on each level.The input levelnodes are presented in Figure 6.4. Similarly,the set

of nodes that form the output levelsare presented in Figure 6.5.The set of allinput

an4 output node combinations allows us to represent the possible robotic actions

required to achieve the goal plan.

1T6 •

1. OBJD: FTS, SPDM, JRMS, EVA. GDMS, MRMS,

SRMS, SSRMS, A TD, APS, MMU. MT,

CETA, OMV, ORBITER. GLUEGUN, WELDER,

BOLTER, PINS-H, PINS-M, PINS-L, CLAMP-H,

CLAMP-M, CLAMP-L, GRAPPLER-H, GRAPPLER-M,

GRA PPLER-L, PR YBA R, SEPA RA TOR, DEMA TOR,

TOOLSETO, TOOLSETI, TOOLSET$, TOOLSET3,

TOOL.SET, t, TOOLSET5, TOOLSET6, CARRIER-L,

CARRIER-M, CARRIER-S, PALLET-L, PALLET-M,

PALLET-S, ORU, TRUSS, AWP, MSC

2. STATE: IS-A CTIVATED, IS-AT, IS-A TTA CI-IED- TO, IS-DEA CTIVATED,

IS-DETACHED-FROM, IS-INSIDE-OF, IS-STOWED-AT, IS-UNSTO WED-
TO

3. OBJI: BLANK, CARGO-BAY, AIRLOCK, FTS, SPDM, JRMS,

EVA, GDMS, MRMS, SRMS, SSRMS, ATD, APS,

MMU, MT, CETA, OMV. ORBITER, CARRIER-L,

CARRIER-M, CARRIER-S, PALLET-L, PALLET-M, PALLET-S,

C_. L, T_'_ L'.SS, A WP, MSC

!

Figure 6.4: Input levels and nodes for case study network

! 177

\

I.

.

ACTOR: FTS, SPDM, JRMS, EVA, GDMS, MRMS,

SRMS, SSRMS, A TD, APS, MMU, MT,

CETA, OMV, ORBITER

ACTION: ACTUATE, ATTACH, CONNECT, DEACTIVATE,

DEA CTUA TE, DEPLO Y, DETACH, DISCONNECT,

FASTEN, HOLD, OPERATE, PLACE, POSITION, RETRACT,

STOW, TRANSPORT, UNFASTEN. UNSTOW

3. OBJD: This list is the same as the OBJ_ list for the input level.

4. OBJI: This list is the same as the OBJt list for the input level.

5. SLAVE: This list is the same as the ACTOR level for the output level, but

also includes a BLANK node.

. TOOL: GLUEGUN, WELDER, BOLTER, PINS-H, PINS-M, PINS-L,

CLAMP-H, CLAMP-M, CLAMP-L, GRAPPLER-H,

GRA PPLER-M, GRA PPLER-L, PR YBA R, SEPA RA TOR,

DEMATOR, TOOLSETO, TOOLSETI, TOOLSET2, TOOLSET3,

TOOLSET_, TOOLSET5, TOOLSET6, BLANK

Figure 6.5: Output levels and nodes for case study network

178

6.4 Case Study Experiments

The case study experiments are constructed to simulate testsperformed in a

real-world,Space Station teleroboticenvironment.
I

6.4.1 Experimental Procedure

The testsuiteiscomprised of seven training/knowledge sets,which correspond

to the seven steps in the goal plan presented in section 6.2. Initially,the network

istrained on each set individuallyto demonstrate that the network can accurately

represent the specificrules and POE wlues in each of the training sets. General

rules and knowledge rules are then added to the network. Predictive capabilitiesof

the ARM network axe examined for each training set. The network is reset after

each test,and the next tr_.i_r.__e_ isevaluated.

The network is then trained on allthe training sets combined. Accuracy of

training isexamined for this large test case. The general rules and allthe "knowl-

edge rules are added to the network. Predictive capabilitiesaxe tested,and it is

demonstrated that combining the training sets creates symbolic relationshipsthat

were not present in each of the individual trainingsets.

I

!

6.4.2 Experimental Suite

The seven training/knowledge sets are presented in Figures 6.6 - 6.12. The

training sets are developed to indicate the followingrelationships.

1. Training set: TOOLSETO can't be used to deactivate the ORU. The GDMS

works well as a slave robot with the ORU.

" Knowledge set: Dextrous manipulators can only use light toolsets.

2. Training set: The JRMS can't be used near the CARGO - BAY. The APS

can't be used with the ORU.

J 179

\

Knowledge set: None.

Q Training set: The SPDM can't be used to attach the ORU. The GDMS is

particular good at attaching objects. The ORU can be reliably attached to

CARRIER - L.

Knowledge set: The ORU can't be attached to small carrier types. Grapplers

can't be used to attach CARRIER- M or PALLET- L. Pins can't be used

to attach CARRIER - L or PALLET - M.

4. Training set: The ATD can't move large carriers. The MT should be used to

move large carriers.

Knowledge set: Dextrous manipulators can't be used to move heavy carriers.

5. Training set: The SPDM and JRMS can't detach from CARRIER - M or

CARRIER-L. The FTS can't detach from PALLET-M or PALLET-L.

Knowledge set: None

6. Training set: Grapplers work well at:.aching the ORU to the MSC.

Knowledge set: None

7. Training set: None

Knowledge set: Transporters should not be used to stow the ORU. Only

PINS, GRAPPLER, and CLAMPS should be used to stow the ORU.

Since the training sets are limited, other symbol relationships may be devel-

oped besides the stated ones above. These "side-effects" will be demonstrated when

prediction using these networks is presented.

. The combination training set contains all the specific rules of training sets

1-7. Similarly, the combination knowledge set contains all the knowledge rules of

knowledge sets 1-7. Therefore, there are 44 specific rules in the combination training

set and 20 knowledge rules.

iso •

Training Set:

• FTS DEACTUATE ORU NULL NULL TOOLSET1 -_

ORU IS-DEACTIVATED NULL POE: 0.95

• SPDM ACTUATE ORU NULL NULL TOOLSET2 -_

ORU IS-ACTIVATED NULL POE: 0.90

• FTS DEACTIVATE AWP NULL GDMS TOOLSET1 -.

AWP IS-DEACTIVATED NULL POE: 0.95

• FTS DEACTIVATE ORU NULL BLANK TOOLSETO -_

ORU IS-DEACTIVATED NULL POE: 0.50

• JRMS OPERATE ORU NULL GDMS TOOLSET0- --,

OR U IS-A CTIVATED NULL POE: 0.9 °.

Knowledge Set:

• < dez > NULL NULL NULL NULL TOOLSET3 --,

NULL IS-DEACTIVATED NULL

• < dez > NULL NULL NULL NULL TOOLSET4 -_

NULL IS-DEA CTIVATED NULL

• < dez > NULL NULL NULL NULL TOOLSET5 -.

NULL IS-DEA CTIVATED NULL

• < dez > NULL NULL NULL NULL TOOLSET6 --,

NULL IS-DEA CTIVATED NULL

• < dez > NULL NULL NULL NULL TOOLSET3 --*

NULL IS-A CTIVA TED NULL

• < dex > NULL NULL NULL NULL TOOLSET4 --*

NULL IS-A CTIVA TED NULL

• < dez > NULL NULL NULL NULL TOOLSET5 --,

NULL IS-A CTIVATED NULL

• < dex > NULL NULL NULL NULL TOOLSET6 -_

- NULL IS-ACTIVATED NULL

Figure 6.6: Training set i

! 181

Training Set:

• JRMS DETACH ORU CARGO-BA }"APS NULL -_

ORU IS-DETACHED-FROM CARGO-BAY POE: 0.50

• JRMS DETACH ORU MSC BLANK NULL -_

ORU IS-DETACHED-FROM MSC POE: 0.95

• GDMS DISCONNECT ORU TRUSS NULL PRYBAR --,

OR U IS-DETACHED-FROM TRUSS POE: 0.75

• MRMS DISCONNECT ORU TRUSS NULL SEPARATOR --,

ORU IS-DETA CHED-FROM TRUSS POE: 0.95

Knowledge Set: None

Figure 6.7: Training set 2

182 •

Training Set:

• SPDM ATTACH ORU CARRIER.[, FTS NULL --,

ORU IS-ATTACHED-TO CARRIER-L POE: 0.40

• GDMS ATTACH ORU CARRIER-L FTS NULL

OR U IS-A TTACHED- TO CARRIER-L POE: 0.97

SPDM ATTACH PINS-H CARRIER-[, FTS NULL

PINS-H IS-ATTACHED-TO CARRIER-L POE: 0.84

SPDM POSITION ORU CARGO-BAY NULL NULL --*

ORU IS-AT CARGO-BAY POE: 0.82

• MRMS CONNECT ORU PALLET-L NULL PINS-H

ORU IS-ATTACHED-TO PALLET-L POE: 0.97

• FTS FASTEN ORU CARRIER-L BLANK GRAPPLER-M --_

OR U IS-A TTA CHED- TO CARRIER-L POE: 0.85

• GDMS CONNECT PALLET-M CARRIER-M NULL PINS-M ---,

PALLET-M IS-ATTACHED-TO CARRIER-M POE: 0.95

• FTS CONNECT PALLET-M CARRIER-M NULL PINS-H --,

PALLET-M IS-ATTACHED-TO CARRIER-M POE: 0.97

Knowledge Set:

• NULL NULL OR U CARRIER-S NULL NULL

NULL IS-A TTA CHED- TO NULL

• NULL NULL ORU PALLET-S NULL NULL ---*

NULL I5-A TTACHED-TO NULL

• NULL NULL NULL PALLET-L NULL < grappler > ---,

NULL IF-.4 TTA CHED- TO NULL

• NULL NULL NULL PALLET-M NULL < pins > --_

NULL IS-A TTA CHED- TO NULL

• NULL NULL NULL CARRIER-M NULL < grappler > --_

NULL IS-A TTA CHED- TO NULL

"• NULL

NULL

NULL NULL CARRIER-L NULL < pins >

IS-A TTA CHED- TO NULL

Figure 6.8: Training set 3

i

| 183

Training Set:

• JRMS PLACE CARRIER-S MSC BLANK NULL .-.-,

CARRIER-S IS-A T MSC POE: 0..95

• FTS PLACE PALLET-S TRUSS BLANK NULL .--,

PALLET-S IS-AT TRUSS POE: 0.97

• FTS PLACE TOOLSETO MSC BLANK NULL ...,

TOOLSETO IS-AT MSC POE: 0.95

• SPDM PLACE GLUEGUN TRUSS BLANK NULL

GLUEGUN IS-AT TRUSS POE: 0.97

• ATD PLACE PALLET-L CARGO-BAY FTS NULL

PALLET-L IS-AT CARGO-BAY POE: 0.43

• ATD PLACE PALLET-S TRUSS FTS NULL -.-,

PALLET.S IS-AT TRUSS POE: 0.87

• ATD POSITION CARRIER-M TRUSS NULL NULL,

CARRIER-M IS-A T TRUSS POE: 0.89

• ATD POSITION CARRIER-L TRUSS NULL NULL,

CARRIER-L IS-A T TRUSS POE: 0._0

• APS POSITION PALLET-M CARGO-BAY NULL NULL

PALLET-M IS-AT CARGO-BA Y POE: 0.9'2

• MT TRANSPORT CARRIER-L TRUSS NULL NULL-..,

CARRIER-L IS-AT TRUSS POE: 0.95

• MT TRANSPORT PALLET-L CARGO-BAY NULL NULL ..-,

PALLET-L IS-AT CARGO-BAY POE: 0.9_

Knowledge Set:

• < dez > NULL PALLET-L NULL NULL NULL -.--,

NULL IS-A T NULL

• < dez > NULL PALLET-M NULl. NULL NULL

NULL IS-A T NULL

", < dez > NULL CARRIER-L NULL NULL NULL -..*

NULL IS-A T NULL

• < den: > NULL CARRIER-M NULl. NULL NULL .-.,

NULL IS-A T NULL

'. Figure 6.9: Training set 4

I84 •

Training Set:

• SPDM DETACH ORU CARRIER-M BLANK NULL --,

OR U IS-DETA CHED-FROM CARRIER-M POE: 0.45

• SPDM DETACH ORU CARRIER-L BLANK NULL --,

ORU IS-DETACHED-FROM CARRIER-L POE: 0.50

• SPDM DETACH GRAPPLER-M PALLET-L BLANK NULL --,

GRAPPLER-M IS-DETACHED-FROM PALLET-L POE: 0.95

• JRMS DISCONNECT ORU CARRIER-M NULL PRYBAR --*

OR U IS-DETA CHED-FROM CARRIER-M POE: 0.55

• JRMS DISCONNECT ORU CARRIER-L NULL PRYBAR -_

ORU IS-DETACHED-FROM CARRIER-L POE: 0.52

• JRMS DISCONNECT GRAPPLER-L PALLET-M NULL PRYBAR --,

GRAPPLER-L IS-DETACHED-FROM PALLET-M POE: 0.98

• FTS DISCONNECT ORU PALLET-L NULL SEPARATOR --,

OR U IS-DETA CHED-FROM PALLET-L POE: 0.43

• FTS DISCONNECT ORU PALLET-M NULL $EP.4._.4TOR --,

ORU IS-DETACHED-FROM PALLET-M POE: 0.52

• FTS DISCONNECT ORU CARRIER-L NULL SEPARATOR --,

OR U IS-DETA CHED-FROM CA RRIER-L POE: 0.95

• GDMS DISCONNECT PALLET-M CARRIER-L NULL PRYBAR --,

P.4LLET-M IS-DETACHED-FROM CARRIE._-L POE: 0.87

• MRMS DETACH PINS-L PALLET-M BLANK NULL --,

PINS-L IS-DETA CHED-FROM P.4 LLET.M POE: 0.95

• GDMS DETACH PALLET-S CARR[ER-M APS NULL --,

PALLET-S IS-DETACHED-FROM CARRIER-M POE: 0.90

• MRMS DISCONNECT PINS-H PALLET-M NULL SEPARATOR --,

PINS-H IS-DETACHED-FROM P.4 LLET-M POE: 0.9_

Knowledge Set: None

Figure 6.10: Training set 5

i

!

! 185

Training Set:

• FTS ATTACH ORU MSC BLANK NULL --,

OR U IS-A TTACHED- TO MSC POE: O.JO

• FTS CONNECT ORU MSC NULL GRAPPLER-M --,

ORU IS-ATTACHED-TO MSC POE: 0.95

• SPDM FASTEN ORU MSC FTS GRAPPLER-H --,

OR U IS-A TTA CHED- TO MSC POE: 0.95

Knowledge Set: None

Figure 6.11: Training set 6

Training Set: None

Knowledge Set:

• < trans > NULL OR U NULL NULL NULL --,

NULL IS-STO WED-AT NULL

• NULL NULL OR U NULL NULL < .fiz- other > --,

NULL IS-S TO WED-A T NULL

Figure 6.12: Training set 7

186 •

6.4.3 Training results

This section presents the resultsof trainingthe ARM network on each of the

training sets,and the resultof training the network on the combined training sets.

The following training constants are used in the case study:

• 0 < w/j < I,the bounds on the weights.

• _ = 0.05, the gradient step sizefor training sets 1 - 4 and 6. The gradient

step sizefor training sets5 and the combination set is_ = 0.025.

• Differror = 0.25, the error band for rule selection.

• 01

• 02

• Os

• _I

-- 10 -9, the minimum gradient before stopping.

= 5 × 10 -3, the de_ir*d zcc-rac'" of each rule in the training set.

= 1 × 10 -4, the minimum weight before pruning is allowed.

= 1 × 10-4, the firstorder forcingfunction constant.

= 4 × 10-2, the second order forcingfunction constant.

Since the number of rules in training set 5 and the combination set is large, a

smaller step size has to be used during gradient descent.

Table 6.1 presents the results of training. As evident from the data in this

table, each set was trained very accurately on the network. In fact, the maximum

error of any of the rules in any of the training sets was less than 0.01 of the acceptable

error. Training set 3 generated 10 second order nodes, of which 6 were removed

through the pruning process. The combination training set generated 20 second

order nodes of which 14 were pruned. It is also evident from the data that larger

training sets required more gradient iterations, which is expected.

The results of the training show that it is quite difficult to generate higher

order nodes. Since the number of first order connections available to a specific rule

I

!1

i

, 187

Table 6.1: Results of case study training sets

Trainin 9 Set H Iterations

1

2

3

4

5

6

7

Comb.

184

90

404

357

1385

88

2398

Max (G,) 2
0.9 x I0-9

0.2 x i0-9

0.8 x i0-9

1.1 x I0-9

0.4 x I0-9

0.0 x 10-9

1.9 x 10-9

E.(C,)=
1.6 x I0c9

0.5 x 10-9

1.7 x 10-9

2.8 x 10-9

1.4 x 10-9

0.1 x 10-9

3.6 x 10-9

is large, a specific rule in the training set can often place the blame for a low POE

value on one of its connections that is not used by other rules in the training set.

This inhibits the development of a higher order relationship. Using a larger training

set with more overlapping sets of symbols would reduce the number of rules that

have first order connections that can be falsely blamed for low POE values. This

would force the training procedure to generate more higher order nodes. It is also

possible _,o generate more higher order nodes if the maximum weight allowed on a

connection is decreased by reducing the allowable blame for first order connections.

Another method for de,eioping ...Jre higher order relationships is to increase

the value of al, in the first order forcing function (3.23), past its maximum allowable

value (3.35). This would reduce the chance that the desired accuracy of a specific

rule could be achieved in first order connections, and would lead to the development

of higher order nodes.

6.4.4 Examples of Prediction

After each training, the ARM was evaluated for its prediction capabilities on

the given training set. To do this, a set of specific rules was constructed that tested

the desired relationships of the training set (as described in section 6.4.2). Each

rule was asserted on the network. The POE value of each asserted rule was then

188

examined in terms of the desired relationships. The base probability value for an

untested specific rule was set at 0.80.

Figures 6.13 and 6.14 show sample prediction rules for training sets 1 and 3,

respectively. Although each network was tested with a larger set of rules, these

figures provide a good demonstration of prediction with the ARM.

Examining figure 6.13, we see that test rules 1 - 3 are members of the training

set, and were accurately represented when asserted on the network. Further, the

d is 1.0, denoting training set rules. Rule 4 in tlds figure demonstrates that the

network was able to produce a low POE value with high confidence for a rule that

dictates the deactivation of the ORU with TOOLSETO. Rules 5, 6 and 7 also show

inhibition between these symbols, but demonstrate another relationship developed

through training. The training set has allowed inhibition to be created between the

nodes DEACTUATE in the robotic action and ORU in the effect. Although this

may be true in the real world, this relationship is something that we (the user) did

not foresee, but was evidently present in training set 1. The cf values for these rules

are somewhat low, denoting both untested connections and reduced overlap with

rules in the training set. Rule 8 demonstrates that a low POE value is assigned

to a rule that is provided by knowledge set 1, which contains the list of symbol

combinations that should be avoided. The final rule presents the prediction of an

untested rule with a high POE value and a high cf.

Figure 6.14 also demonstrates the storage and prediction capabilities of the

ARM. Rules 1 - 3 are members of training set 3 and were accurately stored. Rules

4, 5 and 6 demonstrate that the SPDM can move the ORU, and that the SPDM

and can attach PALLET - M fairly well; however, the SPDM cannot attach the

OTIU. This is a higher order relationship and requires second order nodes. Rule 7

shows that the GDMS performs well at achieving an attachment. Rules 8 and 9

contain symbol combinations that are disallowed by the knowledge set and, thereby,

i

!

i

I 189

j

1. FTS DEACTUATE ORU NULL NULL TOOLSETI

OR U IS-DEA CTIVA TED NULL

E = 0.083394; POE = 0.919989; cf = 1.000000

2. FTS DEACTIVATE ORU NULL BLANK" TOOLSETO .--,

OR U IS-DEA CTIVA TED NULL

E = 0.693139; POE = 0.500004; cf = 1.000000

3. JRMS OPERATE ORU NULL GDMS TOOLSET$ ---,

OR U IS-A CTIVATED NULL

E = 0.083382; POE = 0.920000; cf = 1.000000

4. JRMS DEACTIVATE ORU NULL BLANK" TOOLSETO -.+

OR U IS-DEA CTIVATED NULL

E = 0.672337; POE = 0.510514; cf = 0.848528

5. JRMS DEA CTIVA TE OR U NULL GDMS TOOLSETO --,

OR U IS-DEA CTIVA TED NULL

E = 0.453924; POE - 0.635131; cf = 0.734847

6. SPDM DEACTUATE ORU NULL NULL TOOLSETO

OR U IS-DEA CTIVA TED NULL

E = 0.293932; POE = 0.745327; cf = 0.661438

7. FTS DEACTIVATE ORU NULL GDMS TOOLSET1 .-.,

OR U IS-DEA CTIVA TED NULL

E = 0.251358; POE = 0.777744; cf = 0.774597

8. FTS DEACTUATE ORU NULL NULL TOOLSET3 -.-,

ORU IS-DEACTIVATED NULL

E = 1.115272; POE = 0.327826; cf = 0.750000

9. JRMS DEACTUATE ORU NULL NULL TOOLSET1 --.,

OR U IS-DEA CTIVA TED NULL

E = 0.062591; POE = 0.939327; cf = 0.810093

Figure 6.13: Prediction using training set 1

190 •

1. SPDM A TTA CH OR U CARRIER-L FTS NULL -,

OR U IS-A TTA CHED- TO CARRIER.L

E = 0.916282; POE = 0.400004; cf = 1.000000

2. MRMS CONNECT ORU PALLET-L NULL PINS-H--,

OR U IS-A TTA CHED- TO PALLET.L

E = 0.030459; POE = 0.970000; cf = 1.000000

3. FTS CONNECT PALLET-M CARRIER-M NULL PINS-H -_

PALLET.M IS-A TTA CHED- TO CA RRIER-M

E = 0.030459; POE = 0.970000; cf = 1.000000

4. SPDM CONNECT ORU CARRIER-L NULL GRAPPLER-M -_

ORU IS-ATTACHED-TO CARRIER-L

E = 0.743413; POE = 0.475488; cf = 0.748331

5. SPDM POSITION ORU PALLET-£ NULL NULL --,

OR U IS-A T PALLET-L

E = 0.246296; POE = 0.781691; cf = 0.612372

6. SPDM ATTACH PALLET-M CA RR[ER-M FT c. :VULL --,

PALLET-M IS-A TTA CHED- TO CA RRIER-M

E = 0.190737; POE = 0.826350; cf = 0.489898

7. GDMS FASTEN ORU CARRIER-[, FTS GRAPPLER-M --,

OR U IS-A TTA CHED- TO CARRIER-L

E = 0.097969; POE = 0.906677; cf = 0.816497

8. GDMS FASTEN ORU CARRIER.M FTS GRAPPLER-M --,

OR U IS- A T TA CHED- TO CA RR IER-M

E = 1.128829; POE = 0.323412; cf = 0.490653

9. GDMS FASTEN ORU CARRIER-S FTS GRAPPLER-M--,

ORU IS-ATTACHED-TO CARRIER-S

E = 1.150086; POE = 0.316610; cf = 0.430331

Figure 6.14: Prediction using training set 3

191

have low POE values.

Overall, the predictive POE values provided by the ARM for each of the

training sets showed that the ARM successfully represented the desired relationships.

Occasionally, the ARM developed unexpected symbolic relationships as well. These'

additional relationships are present in the training set, however, and demonstrate

that the ARM can point out subtle relationships in a training set that may have

gonepreviously unnoticed by a user.

Of course, the user can explicitly discover which symbolic relationships were

formed during training by examining the connection weights of the ARM network,

since there is a one-to-one mapping between symbols and nodes. If a relationship

exists in the connections that the user did not ex'pect, he can specifically create

new test situations in the robotic environment to examine these relationships. After

testing, the training set can be updated with the results of the new experiments, and

the ARM network can be accurately retrained with the modified data. Therefore, the

ARM also functions as a feedback mechanism that the user can exploit to determine

and test relationships that may not have been previously realized.

Figure 6.15 shows each of untested specific rules in Figures 6.13 and 6.14

asserted on the ARM network trained wi_h training sets I - 7 combined. Notice

that the probability values have changed for many of the rules. This reflects that

the increased training has affected the weighted connections to make them more

representative of the combined training set.

This figure also point out a flaw in the cf measure we have chosen. It would be

preferable if the cf of each of the specific rules increased to indicate that the ARM

is "more confident" of the POE value with more training. This is not one of the

properties of our current cf measure, as indicated by cf values that are nearly the

same as those in the previous figures. If desired, a new cf measure can easily be

created by the user that also takes into account the number of times a connection

192 •

is used by differentrules. The more times each connection of an untested rule is

used by specificrules in the training set,the higher the d value would be for the

untested rule.

!

|

| 193

.

.

.

.

.

.

.

.

JRMS DEACTIVATE OR U NULL BLANK TOOLSETO

OR U IS-DEA CTIVATED NULL

E = 0.692621 POE = 0.500263 cf = 0.848528

JRMS DEACTIVATE ORU NULL GDMS TOOLSETO -,

OR U [S-DEA CT[VA TED NULL

E = 0.562452 POE = 0.569810 cf = 0.734847

SPDM DEA CTUATE ORU NULL NULL TOOLSETO -..-,

ORU IS.DEA CTIVATED NULL

E - 0.402713 POE = 0.668504 cf = 0.661438

JRMS DEACTUATE ORU NULL NULL TOOLSET1 -.,

OR U IS-DEA CTIVA TED NULL

E = 0.082856 POE = 0.920484 cf = 0.810093

SPDM CONNECT ORU CARRIER-L NULL GRAPPLER-M .-.,

ORU IS-ATTACHED-TO CARRIER-L

E = 0.642305 POE = 0.526078 cf = 0.748331

SPDM POSITION ORU PALLET-L NULL NULL -..

OR U IS-A T PALLET.L

E = 0.163904 POE = 0.848823 cf = 0.612372

SPDM ATTACH P.4LLET-M CARRIER-M FTS NULL -..,

PALLET-M IS.A TTA CHED- TO 6".4 RRIER-M

E = 0.402055 POE = 0.668944 cf = 0.516398

GDMS FASTEN ORU CARRIER-L FTS GRAPPLER-M .-.,

ORU IS-ATTACHED-TO CARRIER-L

E = 0.000000 POE = 1.000000 cf = 0.816497

Figure 6.15: Prediction using the combined training set

194 •

6.5 Associative Recall of Robotic Actions

This section describes the associative recall experiments performed on the

ARM trained with training sets 1 - 7 combined. The purpose of the experimentation

isto findthe optimal robotic action,or setof near-optimal robotic actions,that have

high POE values for effectsstated in the goal plan presented in section 6.2. The

high POE robotic actions form the planning steps that must be carriedout in the

world to achieve the stated goal.

6.5.1 Representation of Nodes

As mentioned in Chapter 4, the GA representationchosen for ARM nodes can

affectthe efficiencyof the GA search. Under the Principle of Meaningful Building

Blocks, itisknown that short-order schemata should possess meaningful, semantic

information about the problem domain. Using thisas a guideline,a binary repre-

sentation is developed from the characteristicsof the agents in the world. Before

presenting the node representation,however, several points must be made.

First,itmust be stated that the representationchosen isnot "optimal" by some

criteria.An optimal representationwould only provide best-caseperformance of the

GA for the given problem. Instead, a somewhat inefficient,heuristicrepresentation

ischosen. Ifthe GA performs well with an inefficientrepresentation,the resultsare

much more impressive,since itdemonstrates that the GA isa robust technique for

associativerecallacross various degrees of representationalefficiency.

Second, for a given desired effect,there are a known set of general rules that

are capable of generating the effect.The general rules denote the set of allowable

agents and actions that can be used to perform the robotic action. This provides

the user with a choice. The user can allow eitherthe representationto encompass

allpossibleactions and agents, or the user can restrictthe representationto include

only actions and agents that can possibly achieve the effect.Either method will

| 195

allow the GA to perform correctassociativerecall,but the second method reduces

the sizeof the search space, leading to a more efficientrecallprocess. Therefore, the

second method is chosen for representation in thiscase study.

By using the general rules as a _prefilter"for allowable agents and actions,

the second method somewhat reduces the need for general rules as inhibitory links

in the ARM network. From the structure of the general rules,however, we do see

that differentactions that achieve the same effectoften require differentclassesof

agent symbols as part of the robotic action. Therefore, the general rules are still

required by the ARM to restrictthe agent symbols that can be used with each of

the allowable actions.

Given the above discussion,itispossible to present the representation of the

setof nodes that form a robotic action in the ARM network. The representation of

each node comes directlyfrom the agent classhierarchy presented in Appendix B

with some semantic information about the agents information provided in Appendix

A.

Each node encodes information about its class as well as its features in binary

form, as presented in Figures 6.16 and 6.17. The first of these examples displays

the representation of agents of the class < robot >. Five bits are used for the

representation of 15 agents, which is inefficient, but allows meaningful building

blocks to occur. The second of these figures displays a more efficient representation

for objects of the class < fix >. In this figure, four bi_ ,:_ used to encode 12

objects. Using a similar strategy, each class of symbols in the TAM is encoded.

In addition to representation of the symbols of each class, the GA must also

encode the symbols NULL, and BLANK. The second figure demonstrates the

encoding of a BLANK node. Binary values that are not assigned to TAM symbols,

or the BLANK or NULL symbols are assigned to the symbol XXX which denotes

an invalid representation.

196

BITS:

<robot>

f
2

size

1 0

label

4-3: 00= <dex>, 01 = <pos>, I0= <tr'ans>

2:0 = I/ght,1= heavy

ENCODING:

00000: EVA

00100: GDMS

01000: SRMS

01100: ATD

10G00: NIMU

10100: OMV

00001: JRMS

00101: MRMS

01001: SSRMS

01 I01: APS

100(31: CETA

10101: OR.BITER

00010: FTS

10010: MT

00011: SPDM

!

Figure 6.16: Representation example for agents in < robot > class

I 197

BITS:

L ,I
3 2

class

1

I
0

3-2:00 = <pins>, 01 = <alaml:_>, I0 = <grappler>,

I I = <fix-other>

I-0:00 = heavy, 01 = medium, I0 = light

ENCOD[NG:

0000: PII'CS-H

0100: CLAMP-H

I000: GRA.PPLER-H

II00: WHLDER

0001: PINS-M

0101: CLAMP-M

1001: GRAPPLER-M

II01: BOLTER

0010: P[I_/S-L

01 I0: CLAMP-L

I010: GRA.PPLER-L

11 I0: GLUEGUN

IIII; BLANK

Figure 6.17: Representation exa.mple for a.genLs in < fiz > class

198 •

For a given desired effect, a set of action symbols are allowed. These actions

symbols are assigned binary values between 0 and the number of allowed actions.

Since we know that the direct and indirec: objects of the robotic action must be

the same as the objects in the desired effect, they need not be explicitly represented

in the search string. Each GA member, therefore, consists of a concatenation of

binary strings for nodes on the ACTOR, ACTION, SLAVE, and TOOL levels. For

example, to represent the robotic action of the specific rule

MT STOW ORU MSC FTS GRAPPLER-M .--.

ORU IS - STOWED - AT MSC

the GA member would be:

1001000101001

where the first 5 bits 10010 encode MT, the next bit, 0, encodes STOW, the next

three bits 010 encode FTS, and the last 4 bits encode GRAPPLER - M. ORU

and MSC are not encoded because they are implicitly stated by the desired effect.

The GA can produce binary strings that do not map to TAM symbols, through

its selection and recombination procedure. These binary representations map to

the XXX symbol described above. To inhibit the GA from developing invalid

representations, any binary string that maps to an XXX node is assigned a very

low POE value. This is called the _Penalty Method" for avoiding bad regions in the

domain of the GA. Over repeated iterations, the GA should be able to avoid invalid

representations by not promoting the building blocks that map to XXX nodes.

I

!

| 199

8.5.2 The GA search process

Given the repr_entation of nodes, the GA search can be summarized as fol-

lows.

Given a Desired Effect,

I. The set of allowable nodes for each levelisdetermined.

2. For each level,the smallest classthat subsumes allthe allowable node symbols

isfound.

3. The length of a GA member is determined by summing the lengths of the

required binary representations of the class at each level. Let us call this

length I.

4. A random population of binary stringsof length Iiscreated. Based on the re-

sultsofsection4.3,we choose a population of 60 members with an immigration

rate of 2 members/iteration. We use a steady state GA.

5. The cost of a member is the Energy value of the member when mapped to

TAM symbols and asserted on the network. The fitness of each member is

found using equation (4.6).

6. The GA search process is run. The user may include the speciation algo-

rithm in the GA process, if desired. The process concludes when either of the

following occurs.

(a) The minimum cost member is found. This is the optimal robotic action,

and has the largest POE for the given desired effect.

(b) The best member in the population has a cost below a user-provided

threshold. This corresponds to a near optimal robotic action.

7. Depending on the inclusion of speciation, the GA responds with either

2OO •

(a) the best robotic action found and the corresponding POE and cf values

or

(b) a set of near-optimal robotic actions with corresponding POE value and

cf values.

6.5.3 Embodying planning constraints into the recall process

It would be helpfulifsome features of the planning process could be incorpo-

rated into the associativerecallprocess. This would allow the planning procedure

influencethe search,and selector avoid certainrobotic actions. Examples of helpful

features are:

I. The abilityto inhibitthe inclusionof particularagents in the robotic action.

This isusefulwhen particularresources are not currently availableto achieve

the desired effect,or the resources are otherwise constrained.

2. The abilityto force the inclusion of particularagents in the robotic action.

This allows the planner to force a particularresource to be used.

3. The abilityto leave part of the robotic action unspecified. This allows the

planner to leave rule variables uninstantiated.

4. The ability to leave part of the desired effect unspecified, and have it specified

by the recall process. This is helpfid if the planner wants to find the best

direct or inairect object to be used to accomplish the desired effect.

One method for inhibiting the inclusion of a particular agent is to remove it

from the class of allowable nodes for that level. In effect, this maps the binary string

representing the agent to the XXX symbol, and yields a low POE value for any

robotic action containing that agent. Other methods can also be used.

On the other hand, forcing the inclusion of a particular agent can be achieved

by removing the portion of the binary string representing the agent's level from the

!

l 201

GA representation of the robotic action. The agent isisexplicitlyasserted on the

network with each robotic action. This similarto the assertionof director indirect

objects on the ARM network.

The planner may wish to leavepart of the robotic action unspecifiedbecause it

does not want to instantiatea particularvariable.This can be achieved by removing

the binary string representing the classof symbols for the variable'slevelfrom the

GA representation of the robotic action. By not asserting any node on an agent

levelof the network, the POE value for each robotic action isnow an upper bound

of possible POE values.

The planner may want the recallprocess to dictatethe directobject or indirect

object to use. For example, the planner may provide the ARM with the desired

effect:

ORU IS- ATTACHED - TO < carrier >

This would force the recall process to find the carrier, and corresponding robotic

action, which produces the optimal POE value. This is particularly useful in an

environment with many similar resources available. The planner wishes to select

the resource that has the highest probability of leading to a successful plan.

This can be accomplished by finding the substring in the robotic action that

corresponds to the given variable, determining its symbolic mapping, and asserting

it on the input nodes. This still constrains the direct and indirect objects to be the

same in the robotic action and effect portions of the network.

202 •

6.5.4 Experimental procedure

Associative recallexperiments were performed on the ARM network trained

with training sets I - 7 combined. The followingdesired effectswere used for each

experiment, corresponding to the seven planning steps:

I. ORU IS-DEPLOYED NULL

2. ORU IS-DETACHED-FROM TRUSS

3. OR U IS-A TTA CHED- TO < carrier >

4. < carrier > IS-AT MSC

5. ORU IS-DETACHED-FROM < carrier >

6. OR U IS-ATTACHED-TO MSC

7. ORU IS-STOWED-AT MSC

We can see that desired effects 3, 4 and 5 require the associative recall technique to

specify a cazrier. The other desired effects use the standard recall procedure.

As demonstrated by the seven steps above, the ARM is used in this case

study to provide robotic actions for an ordered list of effects that have already been

provided by an external planning system. It is important to remember that the

ARM can also be used to limit the search space when developing these planning

steps,ifcombined with a search strategy such as Means-End Analysis.

6.5.5 Experimental results: Efficiency of the GA

The robotic action with the highest POE value (optimal robotic action) is
P

first determined for each desired effect through experimentation with the ARM

network. Each effect is then asserted on the network, and 500 experiments are run

to determine the average number of robotic actions that had to be evaluated to find

|

!

203

Table 6.2: Results of case study associative recall

Recall exp. I[Avg

1 340

2 364

3 2198

4 326

5 1148

6 902

7 322

Pos I Siz [Spe
1584 4096

792 2048

20592 65536

5940 32768

4752 16384

3432 8192

1170 4096

2643

857

1445

845

the optimal robotic action for the given desired effect. This is the same measure

used in Chapter 4, the number of function evaluations. A subset of the desired

effects are then chosen to test the speciation procedure

Table 6.2 presents the results of the experiments on the ARM network. This

table shows the average number of function evaluations that were required to find

the optimal robotic action for each desired effect (Avg), the total number of possible

robotic actions for the given effect (Pos), the size of the binary search space (Siz),

and the average number of function evaluations required to find the optimal robotic

action when using speciation (Spe). It is important to realize that the binary search

space is larger than the number of possible robotic actions due to representational

inefficiency in the encoding of robotic actions.

It is also important to note that each time a robotic action was evaluated,

it was counted, even if the same robotic action had been evaluated earlier in the

GA. For each GA run, therefore, some points were evaluated many times, with each

evaluation adding to the number of function evaluations for that GA run.

As demonstrated by experiments I, 5, 6 and 7, the GA was able to find the

optimal robotic action by evaluating about ¼ of the possible number of robotic

actions. Experiments 3 and 4, which had the largest search spaces, show a significant

reduction in the search time, each evaluating less than _ of the number of possible

204 •

search points. Experiment 2 shows the worst performance, requiring the evaluation

of about ½ of the possiblenumber of robotic actions. Based on thisinformation, the

GA seems to perform efficientlyon all the optimization tasks,except those which

possess a small domain.

When compared to the totalsize of the search space, the GA operated very

efficiently,demonstrating that the Penalty Method was effectivefor avoiding invalid

robotic actions.

From this data, it seems that the chosen GA requires a minimum of about

300 evaluations to find the optimum value,even for the smaller search spaces. This

would indicate that for smaller search spaces:

* a smaller, more exploitive GA should be used, or

• simple enumeration of allrobotic actionsmay be quite effective.

Itisinterestingto note that in three of the four experiments that included spe-

ciation,the average number of function evaluations increased lessthan 25 percent.

In experiment 4, the number of evaluations more than doubled, but was stillsmall

compared to the possible number of robotic actions.This indicatesthat the specia-

tion technique we chose leads to a lessefficientGA, though one whose efficiencyis

stillacceptable for finding optimal robotic actions.

6.5.6 Experimental results: Optimal robotic actions

The GA found the following optimal robotic actions for the seven planning

steps of the goal plan using the ARM network trainedon trainingsets1-7 combined.

1. Desired effect: ORU IS-DEACTIVATED NULL
P

Robotic Action: GDMS DEACTUATE ORU NULL NULL TOOLSETI

E -- 0.0828; POE = 0.92; cf = 0.81

I

!

\

205

2. Desired effect: ORU IS-DETACHED-FROM TRUSS

Robotic Action: MRMS DETACH ORU TRUSS BLANK NULL

E - 0.0482; POE = 0.95; cf = 0.75

3. Desired effect: ORU IS-ATTACHED-TO < carrier >

Robotic Action: GDMS FASTEN ORU CARRIER.L FTS GRAPPLER-M

E = 0.000; POE = 0.99; cf = 0.

4. Desired effect: < carrier > IS-A T MSC

Robotic Action: JRMS PLACE CARRIER-S MSC BLANK NULL

E = 0.051; POE = 0.95; cf = 1.0

5. Desired effect: ORU IS-DETACHED-FROM < carrier >

Robotic Action: GDMS DISCONNECT ORU CARRIER-L NULL SEPARA-

TOR

E = 0.0389; POE = 0.96; cf = 0.89

6. Desired effect: ORUIS-ATTACHED-TO MSC

Robotic Action: GDMS FASTEN ORU MSC FTS GRAPPLER-H

E = 0.0157; POE - 0.98; cf- 0.89

7. Desired effect: ORU IS-STOWED-AT,_fSC

Robotic Action: GDMS STOW ORU MSC FTS PINS-H

E = 0.1610; POE - 0.85; cf = 0.38

Many of the planning steps use the same actors, which allows for a conservation

of resources. This set of robotic actions will not achieve the goal state, however, due

to steps 3, 4 and 5. These robotic actions do not use the the same carrier, so the
F

ORU can't be moved to the MSC successfully using these steps. To find a common

carrier that can be used in all three steps, a GA with speciation is applied.

206 m

The resultsof a sample speciation run yield the followingrobotic action alter-

natives for steps 3, 4 and 5:

Desired Effect: ORU IS-ATTACHED-TO < carrier >

• GDMS FASTEN ORU CARRIER-[, FTS GRAPPLER-M

E = 0.0000; POE = 0.99; cf = 0.81

• GDMS FASTEN ORU CARRIER-L FTS GRAPPLER-H

E -- 0.0160; POE = 0.98; cf -- 0.79

• GDMS FASTEN ORU CARRIER-[, FTS GLUEGUN

E - 0.0478; POE = 0.95; d -- 0.75

• GDMS FASTEN ORU CARRIER-L FTS GRAPPLER-L

E = 0.0478; POE = 0.95; cf = 0.75

• MRMS FASTEN ORU C.4RRIER-L FTS GLUEGUN

E = 0.0669; POE = 0.94; cf = 0.62

• MRMS FASTEN OR U PALLET-L FTS GLUEGUN

E -- 0.0891; POE = 0.91; cf = 0.60

Desired ERect: < carrier > IS-AT MSC

• JRMS PLACE CARRIER-S MSC BLANK NULL

E - 0.0512; POE = 0.95; cf -- 1.0

• JRMS POSITION CARRIER-S MSC NULL NULL

- E - 0.0527; POE = 0.95; cf -- 0.79

• MT POSITION CARRIER-M MSC NULL NULL

E = 0.0602; POE = 0.94; cf = 0.44

I

\

207

e MT TRANSPORT CARRIER-M MSC NULL NULL

E - 0.0637; POE = 0.94; d - 0.28

• APS POSITION CARRIER.M MSC NULL NULL

E = 0.0641; POE = 0.94; cf -- 0.44

• MT TRANSPORT CARRIER-L MSC NULL NULL

E - 0.0831; POE = 0.92; cf - 0.58

Desired Effect: OR U IS-DETA CHED-FROM < carrier >

• GDMS DISCONNECT OR U CARRIER-L NULL SEPARATOR

E - 0.0390; POE = 0.96; cf "- 0.89

• MRMS DETACH OR U PA LLET-M SSRMS NULL

E = 0.0604; POE = 0.94; cf - 0.57

• MRMS DETACH ORU P.4LLET-M BLANK NULL

E - 0.0605; POE - 0.94; cf - 0.73

JRMS DETACH OR U PALLET-M SSRMS NULL

E = 0.0606; POE = 0.94; cf - 0.57

JRMS DETACH ORU P.4LLET-M SRMS NULL

E = 0.0606; POE = 0.94; cf -- 0.57

MRMS DETACH ORU PALLET-L ATD NULL

E = 0.0692; POE = 0.93; cf -- 0.56

The speciation process did an excellent job of developing sets of robotic action

alternatives. Using these alternatives, the planner can select common carrier types

and can form the following plan.

208 m

1. Desired effect: ORU IS-DEACTIV4TED NULL

Robotic Action: GDMS DEACTUATE ORU NULL NULL TOOLSETI

E = 0.0828; POE = 0.92; cf = 0.81

2. Desired effect: ORU IS-DETACHED-FROM TRUSS

Robotic Action: MRMS DETACH ORU TRUSS BLANK NULL

E = 0.0482, POE = 0.95; d = 0.75

3. Desired effect: ORU IS-ATTACHED-TO < carrier >

Robotic Action: GDMS FASTEN ORU CARRIER-L FTS GRAPPLER-M

E = 0.000; POE = 0.99; cf = 0.

4. Desired effect: < carrier > IS-AT MSC

Robotic Action: MT TRANSPORT CARRIER-L MSC NULL NULL

E = 0.0831; POE = 0.92; cf = 0.58

5. Desired effect: ORU IS-DETACHED-FROM < carrier >

Robotic Action: GDMS DISCONNECT ORU CARRIER-L NULL SEPARA-

TOR

E = 0.0389; POE = 0.96; cf = 0.89

6. Desired effect: ORU IS-ATTACHED-TO MSC

Robotic Action: GDMS FASTEN ORU MSC FTS GRAPPLER-H

E -- 0.0157; POE = 0.98; cf = 0.89

7. Desired effect: ORU IS-STOWED-AT MSC

Robotic Action: GDMS STOW OR[" MSC FTS PINS-H

E = 0.1610: POE = 0.85; cf = 0.38
P

If desired, the planner may wish to reduce the number of agents used in the

plan, by replacing the MRMS in step '2 with the GDMS. The planner cart query

!

I 209

the network with the specific rule

GDMS DETACH ORU TRUSS BLANK NULL .--,

ORU IS - DETACHED - FROM TRUSS

and determine that E = 0.0640, POE = 0.94, and cf = 0.75. The high POE and cf

values determine that this robotic action will lead to a successful planning step, so

the substitution can occur.

This example, therefore, demonstrates the ability of the ARM to develop suc-

cessful plans given a set of desired effects.

6.6 Conclusions

This chapter presents a case study based on the NASA Flight Telerobotic

Servicer Task Analysis Methodology. The results presented in this chapter provide

the following evaluation of the ARM model.

1. The ability to represent general rules. The ARM is able to represent a set

general rules that contains groups of rules that lead to the same effect, and

rules that lead to multiple effects.

2. The ability to accurately store specific rules and corresponding POE values

from the training set. The training algorithm produces a very efficient repre-

sentation of each rule in the training set. Higher order nodes are created, and

pruned when necessary. Difficulty in developing higher order nodes can occur

if the rules in the training set do not overlap greatly, in which case most of

the for low POE values is placed on first order connections.

3. The ability to predict POE values for untested specific rules. The ARM is

able to develop the representations given in the training set. Subtle represen-

tations that the user may not see are also developed and may help the user to

210 •

create new robotic tests.The development of symbolic relationshipsleads to

reasonable predicted POE values for untested specificrules.

4. The speed of associativerecallof the optimal robotic action for each desired

effectof the plan. The GA isshown to be ef_cient as a recallprocedure for

medium and large domain sizes.For smaller domains, the chosen GA is not

as efficient.

5. The speed of associativerecallof a set of he.at-optimal robotic actions for

each desired effectof the plan. Speciation resultsdemonstrate some drop in

e_ciency in the GA a_gorithm, but stillprovide acceptable results.Speciation

does an excellentjob producing setsof high POE robotic actions.

R

!

\

CHAPTER T

CONCLUSIONS

7.1 Summary and Conclusions

This thesis has described the design and implementation of the Associative

Rule Memory and has demonstrated its ability to function within a robotic planning

system. The motivation for this work is:

1. The need for an evaluation function that ranks alternative robotic actions for

a planning step, in a world where many robotic actions can lead to the same

effect.

2. q'he require,,n, en+, that the evaluation function must efgiciently find the optimal

robotic actions with respect to the evaluation function for a given desired

effect.

3. A desireto model the uncertainty inherent to roboticsystems, and incorporate

thismodel into the planning of robotic actions.

Based on these needs, the ARM was designed toembody the followingfeatures:

1. The abilityto interfacewith a varietyof planning systems through the use of

general and specificrules.

2. The storage of testedrobotic action/desiredeffectpairings with probabilityof

effectvalues.

3. The storage of known symbol relationships,as provided by a user.

P

4. The abilityto extract relationshipsbetween symbols that affectPOE values

and use these relationships to provide predictive POE values for untested

robotic action/desired effectpairings.

21]

212 •

5. The ability to provide as output, a set of high POE robotic actions that achieve

a desired effect, given the desired effect as input.

6. The ability to produce a confidence factor that indicates the training received

by the weights of an untested robotic action/desired effect pairing.

The main contributions of this thesis are:

1. The design of a neural network model, called the ARM, that is able to represent

a symbolic grammar comprised of a robotic action and effect.

2. The ability of this model to mz.intain instantiations of the grammar with a real

valued number representing the probability that the robotic action achieves

the desired effect.

3. A training procedure that guarantees that the ARM will develop accurate

POE representations for all specific rules in the training set.

4. A training procedure that develops weighted connections that represent the

extent to which agents and actions of a robotic action can work together to

achieve a desired effect.

5. A technique for adding higher order nodes when necessary, and pruning them

when they are unnecessary.

6. A demonstration that the training procedure builds connections that can be

used for predicting POE values for untested specific rules.

7. The addition of known agent relationships to the ARM model through the

use of knowledge rules and a confidence factor that provides the user with a

P measure of confidence in untested specific rules.

8. The demonstration that a Genetic Algorithm can be used to find the minimum

energy state of a Boltzmann Machine.

U

!

\

1

213

9. The development of the immigration operator for Genetic Algorithms and

the demonstration that immigration improves the performance of a GA on

functions that possess difficult local optima.

10. The proof that a GA combined with the immigration operator will converge

in probability to the global optimum of a cost function.

11. The demonstration that the AtLM can function as the Organization level of

the Intelligent Machine.

12. The development of a case study based on the Flight Telerobotic Servicer Task

Analysis Methodology that demonstrates

(a) the effectiveness of the training procedure,

(b) the efficiency of associative recall,

(c) and the use of the ARM on a complex, target world model.

7.2 Recommendations for Future Research

The following research items can emend the results presented in this thesis.

1. Extending the ARM to multiple planning steps. The ARM is designed to

find the optimal robotic actions for a given desired effect. When developing

a sequence of planning steps, the set of robotic actions provided by the ARM

may require the use of many actors and objects in the world. To reduce the

number of resources required by a plan, it may be helpful to have the ARM

search for several sequential planning steps at once, under the constraint that

each planning step uses the same actor or set of objects.

One method for accomplishing this is to search several identical ARM models

at once, each model provided with a different desired effect as input. Each

model, therefore, corresponds to a different planning step. The robotic actions

214 •

tested on each model are constrained to use the same resource,and a new cost

function is established to represent the sum of the Energy values for each

model. By minimizing the Energy function over the setof constrained robotic

actions, a set of steps axe developed that have high POE values and reduce

the number of resources used.

2. Developing a system for providing specificrules. A system isneeded to com-

pute POE values for tested robotic actions,and provide these robotic actions

to the ARM in the form of specificrules.Testing robotic actions in the envi-

ronment can be done by a user, or accomplished automatically. For example,

Miller [110],began development of an automatic, bottom-up system that in-

teractswith the environment and develops general and specificrules.

3. The development of a complexity model. The ARM models the uncertainty

of specificrules. It is also important to have a measure of the complexity of

executing a roboticaction. A combined measure of uncertaintyand complexity

can be used to deterrrdne optimal robotic actions given a desired effect.

4. The development of concepts using the ARM model. Currently, the ARM

develops inhibition between symbols through the training set. Also, inhibition

is created by use of the knowledge rules. Prediction using the ARM is based

on this combined inter-symbol inhibition. It would be very useful if the ARM

model could abstract the symbols that inhibit each other to determine symbol

classes that should not be used together. This would provide valuable feedback

to the user.

5. Experimenting with different default probability values. The base POE value

for an untested rule in this thesis is 0.80, which indicates that most untested

specific rules should work well. This allows the ARM to output high POE

values for robotic actions that may be quite unlike any tested rule, and thereby

I

!

!

i

I 215

allows the planning system to explore more robotic actions. When planning,

itmay be desirableto use a more conservative value,such as 0.50,to force the

ARaM to produce robotic actions that are more similarto tested specificrules.

The effectthat changing the base POE value has on recalled robotic actions

should be experimented with and analyzed.

6. Accelerating the training technique. As mentioned in Chapter 3, it should be

possible to use an accelerated training technique, such as constrained conjugate

gradient, to reduce the training time required by the ARM. Since the training

is performed off-line, however, there may be little need for an accelerated

technique.

7. Experimenting with higher order nodes. In Chapter 6, we determine that it

may be difficult to develop higher order nodes. Experiments should be per-

formed that reduce the maximum weight allowed on a first order connection.

This eases the development of higher order nodes. Experiments should be per-

formed to test the prediction capabilities of the ARM under these conditions.

8. Evaluating immigration on a generational Genetic Algorithm. The exper-

iments performed in this thesis test immigration on a steady state and a

restarted GA. The immigration operator should also be tested on a gener-

ation GA using the same test suite of functions.

I

1

I

%

Literature Cited

[i]

[21

[3]

[4]

[51

[61

[7]

[8]

[91

[io]

G. N. Saridis and H. E. Stephanou, _A hierarchical approach to the control

of a prosthetic arm," IEEE Transactions on Systems, Man and Cybernetics,

vol. 7, no. 6, pp. 407-420, 1977.

"Flight Telerobotic Servicer:Task analysismethodology," tech. rep.,

Goddard Space Flight Center, Greenbelt, MD, 1989.

R. E. Fikes and N. J. Nilsson, "STRIPS: A new approach to the application

of theorem proving to problem solving,"ArtificialIntelligence,vol.2, no. 3,4,

pp. 189-208, 1971.

A. Newell and G. Ernst, "The search for generality," in Information

Processing 65: Proceedings of IFIP Congress 1965 (W. A. Kalenich, ed.),

pp. 17-24, Washington, D. C.: Spartan Books, 1965.

E. D. Sarcerdoti, "Planning in a hierarchy of abstraction spaces," in Third

International Joint Conference on .4 rtificial Intelligence, (Stanford, CA),

pp. 412-422, 1973.

E. D. Saxcerdoti, "The nonlinear nature of plans," in Advance Papers of the

Fourth International Joint Conference on Artificial Intelligence, (Tbilisi,

Georgia, USSR), pp. 206-214, 1975.

M. Stefik, "Planning with constraints (MOLGEN: part 1)," Artificial

Intelligence, vol. 16, no. 2, pp. 111-140, 1981.

M. Stefik, "Planning with constraints (MOLGEN: part 2)," Artificial

Intelligence, vol. 16, no. 2, pp. 141-170, 1981.

A. Tare, "Generating project networks," in International Joint Conference

on Artificial Inteligence, (Cambridge. MA), 1977.

D. E. Wilkens, "Domain-independent planning: Representation and plan

generation," Artificial Intelligence, vo[. 2"2, no. 3, pp. 269-302, 1984.

[11] M. J. Rokey, "Remote Mission Specialist: A study in real-time, adaptive

planning," IEEE Transactions on Robotics and Automation, vol. 6,

pp. 455-461, i990.

[12] G. N. Saridis, "Toward the realization of intelligent controls," IEEE

Proceedings, vol. 67, no. 8, pp. 1115-1133, 1979.

21_

217 •

[13]

[14]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

G. N. Saridis, "Intelligent robotic control," IEEE Transactions on Automatic

Control, vol. 28, no. 5, pp. 547-556, 1983.

G. N. Saridis, "Control performance a.s an entropy," Control Theory and

Advanced Technology, vol. 1, no. 2, 1985.

G. N. Saxidis, "On the revised theory of intelligent machines," in Proceedings

of an International Workshop on Intelligent Robots and Systems, (Tsukuba,

Japan), September 1989.

M. C. Moed and G. N. Saridis, "A Boltzmann machine for the organization

of intelligent machines," IEEE Transactions on Systems, Man, and

Cybernetics, vol. 20, pp. 1094--1102, September 1990.

K. P. Valavanis, A Mathematical FoTvnulation for the Analytical Design of

Intelligent Machines. PhD thesis, Rensselaer Polytechnic Institute, Troy,

NY, 1986.

G. N. Saridis and K. P. Valavanis, "Analytical design of intelligent

machines," Automatica, vol. 24, no. 2, pp. 123-133, 1988.

L. Brownston, R. Farrell, E. Kant, and N. Martin, Programming Ezpert

Systems in OPS$. Addison-Wesley. 1986.

C. Torras I Genis, "Relaxation and neural learning: Points of convergence

and divergence," Journal of Parallel Distributed Computing, vol. 6,

pp. 217-244, 1989.

S. Grossberg, "Nonlinear neural networks: Principles, mechanisms, and

architectures," Neural Networks, vol. 1, no. 1, pp. 17-62, 1988.

R. P. Lippmann, "An introduction to computing with neural nets," IEEE

ASSP Magazine, pp. 4-22, April 1987.

G. E. Hinton, "Connectionist learning procedures," Artificial Intelligence,

vol. 40, pp. 185-234, 1989.

D. E. Rumelhart and J. L. McCleUand, Parallel Distributed Processing, Vol.

L Cambridge, MA: The MIT Press, 1986.

[25] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, "Learning internal

representations by error propagation." in Parallel Distributed Processing

. Volume I (D. E. Rumelhart and J. L. McCleUand, eds.), pp. 318-362,

Cambridge, MA: The MIT Press, 1986.

[26] P. Werbos, Beyond regression: New tools for prediction and analysis in the

behavioral sciences. PhD thesis, Harvard University, Cambridge, MA, 1974.

1

I

218

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39t

R. J. Williams, "Towards a theory of reinforcement-learning connectionist

systems," Tech. Rep. NU-CCS-88-3, College of Computer Science,

Northeastern University, Boston, MA, 1988.

M. W. Roth, "A survey of neural network technology for automatic target

recognition," IEEE Transactions on Neural Networks, vol.1,pp. 28-43, 1990.

W. Y. Huang and R. P. Lippmann, _Comparisons between neural net and

conventional classifiers," in Proceedings of the [EEE First International

Conference on Neural Networks, (San Diego, CA), pp. 485--492, 1987.

D. W. Ruck, "Multisensor target detection and classification," Master's

thesis, AFIT/GE/ENG, Wright-Patterson AFB, Ohio, 1987.

K. S. Narendra and K. Parthasarathy, "Identification and control of

dynamical systems using neural networks," IEEE Transactions on Neural

Networks, vol. 1, pp. 4-27, 1990.

P. J. Antsaklis, "Neural networks for control systems," [EEE Transactions

on Neural Networks, vol. 1, p. 148, 1990.

S. Y. Kung and J. N. Hwang, "Neural network architectures for robotic

applications," IEEE Transactions on Robotics and Automation, vol. 5, no. 5,

pp. 641-657, 1989.

G. Josin, "Neural-space generalization of a topological transformation,"

Biological Cybernetics, vol. 59, pp. 283-290, 1988.

H. Miyamoto M. Kawato, T. Setoyama, and F.. _uzuki,

"Feedback-error-learning neural network for trajectory control of a robotic

manipulator," Neural Networks, voI. 1, pp. 251-265, 1988.

M. Kawato. Y. Uno, M. Isobe, and R. Suzuki, "Hierarchical neural network

model for voluntary movement with application to robotics," [EEE Control

Systems Magazine, pp. 8-15, April 1988.

K. Goldberg and B. Pearlmutter, "Using a neural network to learn the

dynamics of the CMU Direct-Drive Arm II," Tech. Rep. CMU-CS-88-160,

Carnegie .Mellon University, Pittsburgh, PA, 1988.

D. S. Day, "Towards integrating automatic and controlled problem solving,"

in IEEE First International Conference on Neural Networks, vol. 2, (San

Diego, CA), pp. 661-669. 1987.

S. Grossberg, "Adaptive pattern classification and universal recoding, i:

Parallel development and coding of neural feature detectors," Biological

Cybernetics. vol. 23. pp. 121-134, 1976.

219 •

[4oi

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[5o]

[51]

F

[52]

S. Grossberg, Studies of mind and brain: Neural Principles of learning,

perception, development, cognition, and motor control. Boston: Reidel Press,

1982.

S. Grossberg and N. A. Schmajuk, "Neural dynamics of adaptive timing and

temporal discrimination during associative learning," Neural Networks,

vol. 2, no. 2, pp. 79-102, 1989.

D. S. Levine and P. S. Prueitt, "bIodeling some effects of frontal lobe

damage - novelty and perseveration," Neural Networks, vol. 2, no. 2,

pp. 102-116, 1989.

G. A. Carpenter and S. Grossberg, "A massively parallelarchitecturefor a

self-organizingneural pattern recognition machine," Computer Vision,

Graphics, and Image Processing,vol.37, pp. 54-115, 1987.

J.J. Hopfield, "Neural networks and physical systems with emergent

collectivecomputational abilities,"Proceedings of the National Academy of

Sciences, vol. 79, pp. 2554-2558, 1982.

J. J. Hopfield, "Neurons with graded response have collective computational

properties like those of two-state neurons," Proceedings of the National

Academy of Sciences, vol. 81, pp. 3088-3092, 1984.

M. Zak, "Terminal attractors for addressable memory in neural networks,"

Physics Letters A, vol. 133, pp. 18-22, 1988.

M. W. Hirsch, "Convergence in neural nets," in IEEE First International

Conference on Neural Networks, vol. 2, (San Diego, CA), pp. 115-124, 1987.

R. J. McEliece, E. C. Posner, E. R. Rodemich, and S. S. Venkatesh, "The

capacity of the Hopfield associative memory," IEEE Transactions on

Information Theory, vol. IT-33, pp. 461-482, July 1987.

S. Amari and K. Maginu, "Statistical neurodynamics of associative

memory," Neural Networks, vol. 1, no. 1, pp. 63-73, 1988.

J. J. Hopfield and D. W. Tank, "Neural computation of decisions in

optimization problems," Biological Cybernetics, vol. 52, pp. 141-152, 1985.

D. S. Touretzky, "Representing conceptual structures in a neural network,"

in IEEE First International Conference on Neural Networks, vol. 2, (San

Diego, CA), pp. 279-286, 1987.

G. E. Hinton, "Learning distributed representations of concepts," in

Proceedings of the Eighth Annual Conference of the Cognitive Science

Society, pp. 1-12, 1986.

!

I

220

[53]

[s4]

[56]

[57]

[58]

[59]

[6o]

[61]

[62]

[63]

[64]

C. P. Dolan and M. G. Dyer, "Symbolic schemata, role binding and the

evolution of structure in connectionist memories," in IEEE First

International Conference on Neural Networks, vol. 2, (San Diego, CA),

pp. 287-298, 1987.

D. H. Ackley, G. E. Hinton, and T. J. Sejnowski, "A learning algorithm for

Boltzmann machines," Cognitive Science, vol. 9, pp. 147-169, 1985.

G. E. Hinton and T. J. Sejnowski, "Learning and relearning in Boltzmann

machines," in Parallel Distributed Processing Volume I (D. E. Rumelhart and

J. L. McCleiland, eds.), pp. 282-317, Cambridge, MA: The MIT Press, 1986.

H. J. Sussmann, "Learning algorithms for Boltzmann machines," in

Proceedings of the _7th Conference on Decision and Control, (Austin, TX),

pp. 786-791, 1988.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, "Optimization by simulated

annealing," Science, vol. 4598, pp. 671-680, 1983.

G. E. Hinton and T. J. Sejnowski, "Separating figure from ground with a

Boltzmann machine," in Vision, Brain, and Cooperative Computation (M. A.

Arbib and A. R. Hanson, eds.), pp. 703-724, Cambridge, MA: The MIT

Press, 1987.

J. H. M. Korst and E. H. L. Aarts, "Combinatorial optimization on a

Boltzmann machine," Jovrnal of Parallel and Distributed Computing, vol. 6,

pp. 331-357, 1989.

D. E. Rumelhart, P. Smolensky, J. L. McClelland, and G. E. Hinton,

"Schemata and sequential thought processes in PDP models," in Parallel

Distributed Processing Volume H (D. E. Rumelhart and J. L. McClelland,

eds.), pp. 7-57, Cambridge, MA: The MIT Press, 1986.

H. Geffner and J. Pearl, "On the probabilistic semantics of connectionist

networks," in [EEE First International Conference on Neural Networks,

vol. 2, (San Diego, CA), pp. 187-195, 1987.

J. Pearl, "Evidential reasoning using stochastic simulation of causal models,"

Artificial Intelligence, vol. 32, pp. 245-257, 1987.

J. Pearl, "Fusion, propagation, and structuring in belief networks," Artificial

Intelligence, vol. 29, pp. 241-288, 1986.

D. S. Touretzky and G. E. Hinton, _Symbols among the neurons: Details of

a connectionist inference architecture," in Proceedings of the Ninth

International Joint Conference on Artificial Intelligence, (Los Angeles, CA),

pp. 239-243, 1985.

221 •

[65] D. L. Luenberger, Linear and Nonlinear Programming, Second Edition.

Addison-Wesley, 1984.

[66] S. Matyas, "Random optimization," Automatic Remote Control, vol. 26,

pp. 244-251, 1966.

[67] G. N. Saridis, "Expanding subinterval random search for system

identification and control," [EEE Transactions on Automatic Control,

pp. 405-412, 1977.

[68] E. H. L. Aarts and J. H. M. Korst, Simulated Annealing and Bolt.-mann

Machines. Chichester: Wiley, 1988.

[69] S. Geman and D. Geman, "Stochastic relaxation, Gibbs distributions and

Bayesian restoration of images," IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 6, pp. 721-741, November 1984.

[70] J. H. Holland, Adaptation in Natural and Artificial Systems. Ann Arbor, MI:

The University of Michigan Press, 1975.

[71] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine

Learning. Addison-Wesley, 1989.

[72] K. A. De Jong, An Analysis of the Behavior of a class of Genetic Adaptive

Systems. PhD thesis, University of Michigan, Ann Arbor, MI, 1975.

[73] L. Davis, "Job shop scheduling with genetic algorithms," in Proceedings of

an Internatzonal Conference on Genetic Algorithms, pp. 136-140, 1985.

[74] L. Davis, "Applying adaptive algorithms to epistatic domains," in

Proceedings of the 9th International Joint Conference On Artificial

Intelligence, pp. 162-164, 1985.

[75] D. E. Glover, "Solving a complex keyboard configuration problem through

generalized adaptive search," in Genetic Algorithms and Simulated

Annealing (L. Davis, ed.), London: Pitman, 1987.

[76] J. E. Baker, "Reducing bias and inefficiency in the selection algorithm," in

Proceedings of the Second International Conference on Genetic Algorithms

and their Applications, (Cambridge, MA), pp. 14-21, 1987.

[77] J. J. Grefenstette and J. E. Baker, "How genetic algorithms work: A critical

look at implicit parallelism," in Proceedings of the Third International

" Conference on Genetic Algorithms. pp. 20-27, 1989.

[78] D. E. Goldberg, "Sizing populations for serial and parallel genetic

algorithms," in Proceedings of the Third International Conference on Genetic

Algorithms, pp. 70-79, 1989.

\

222

[79]

[so]

[81]

[82]

[83]

[85]

[86]

[87]

[88]

[89]

L. J. Eshelman, R. A. Caruana, and J. D. Schaffer, "Biases in the crossover

landscape," in Proceedings of the Third International Conference on Genetic

Algomthras, pp. 10-19, 1989.

J. P. Cohoon, S. U. Hegde, W. N. Martin, and D. Richards, "Punctuated

equilibria: A parallel genetic algorithm," in Proceedings of the Second

International Conference on Genetic Algorithms and their Applications,

(Cambridge, MA), pp. 148-154, 1987.

D. E. Brown, C. L. Huntley, and A. R. Spillane, ``A parallel genetic heuristic

for the quadratic assignment problem," in Proceedings of the Third

International Conference on Genetic Algorithms, pp. 406-415, 1989.

H. Mfilenbein, "Parallel genetic algorithms, population genetics and

combinatorial optimization," in Proceedings of the Third International

Conference on Genetic Algorithms, pp. 416--421, 1989.

M. Gorges-Schleuter, "ASPARAGOS an asynchronous parallel genetic

optimization strategy," in Proceedings of the Third International Conference

on Genetic Algorithms, pp. 422--427, 1989.

C. C. Pettey and M. R. Leuze, "A theoretical investigation of a parallel

genetic algorithm," in Proceedings of the Third International Conference on

Genetic Algorithms, pp. 398-405, 1989.

R. Tanese, "Distributed genetic algorithms," in Proceedings of the Third

International Conference on Genetic Algorithms, pp. 434--439, 1989.

H. J. Antonisse and K. S. Keller, _Genetic operators for high level knowledge

representation," in Proceedings of the Second International Conference on

Genetic Algorithms and their Applications, (Cambridge, MA), pp. 69-76,
1987.

J. J. Grefenstette, R. Gopal, B. J. Rosmaita, and D. V. Gucht, "Genetic

algorithms for the traveling salesman problem," in Proceedings of an

International Conference on Genetic Algorithms, pp. 160-168, 1985.

L. Davis and S. Coomb, ``Genetic algorithms and communication link speed

design: Theoretical considerations," in Proceedings of an International

Conference on Genetic Algorithms and their Applications, (Cambridge, MA),

pp. 252-256, 1987.

J. D. Schaffer, R. A. Caruana, L. J. Eschelman, and R. Das, ``A study of

control parameters affecting online performance of genetic algorithms for

function optimization," in Proceedings of the Third International Conference

on Genetic Algorithms, pp. 51-60. 1989.

223 •

[90] D. H. Ackley, A Connectionist Machine for Genetic Hillclimbing. Kluwer

Academic Publishers, 1987.

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

L. Davis, "Adapting operator probabilities in genetic algorithms," in

Proceedings of the Third International Conference on Genetic Algorithms,

pp. 61-69, 1989.

R. A. Caruana and J. D. Schaffer, "Representation and hidden bias: Gray

vs. binary coding for genetic algorithms," in Proceedings of the Fifth Int.

Conf. on Machine Learning, pp. 153-161, 1988.

R. B. Hollstien, Artificial genetic adaptation in computer control systems.

PhD thesis, University of Michigan, Ann Arbor, MI, 1971.

D. E. Goldberg and J. Richardson, "Genetic algorithms with sharing for

multimodal function optimization," in Proceedings of the Second

International Conference on Genetic Algorithms and their Applications,

(Cambridge, MA), pp. 41-49, 1987.

K. Deb and D. E. Goldberg, "An investigation of niche and species

formation in genetic function optimization," in Proceedings of the Third

International Conference on Genetic Algorithms, pp. 42-50, 1989.

G. N. Saridis. "Analytic formulation of the principle of increasing precision

with decreasing intelligence for intelligent machines," Automation, vol. 25,

no. 3, pp. 461-467, 1989.

A. Levis, "Human organizations as distributed intelligence systems," in

Proceedings of the First IFA C-IMACS Symposium on Distributed Intelligence

Systems, (Varna, Bulgaria), 1988.

G. N. Saridis, "Entropy formulation for optimal and adaptive control," IEEE

Transactions on Automatic Control. vol. 33, no. 8, pp. 713-721, 1988.

[99] G. N. Saridis, Self-Organizing Controls of Stochastic Systems. New York:

Marcel Dekker, 1977.

[100]

[1oi]

[io2]

J. R. Birk and R. B. Kelley, "An overview of the basic research needed to

advance the state of knowledge in robotics," IEEE Transactions on Systems,

Man, and Cybernetics, vol. 11, no. 8. pp. 575-579, 1981.

F. Y. Wang and G. N. Saridis, "A model for coordination of intelligent

machines using Petri nets," in IEEE Symposium on Intelligent Control,

(Washington, D.C.), pp. 28-33, August 1988.

F. Y. Wang, A Coordination Theory for Intelligent Machines. PhD thesis,

Renssetaer Polytechnic Institute, Troy, NY, 1990.

!

,I 224

[lO3]

[lo41

[105]

[106]

[lO7]

[108]

[109]

[I10]

K. J. Kyriakopoulos and G. N. Saridis, "Collision avoidance of mobile robots

in a non-stationary environment," Control Systerr_ Magazine, June 1991.

E. T. Jaynes, "Information theory and statistical mechanics," Physical

Review, vol. 106, no. 4, pp. 620--630, 1957.

American Heritage Dictionary of the English Language. 1969.

R. C. Conant, "Laws of information which govern systems," IEEE

Transactions on Systems, Man, and Cybernetics, vol. 6, no. 4, pp. 240-255,

1976.

T. Vamos, "Metalanguages - conceptual model: Bridge between machine and

human intelligence," in Proceedings of the ist International Symposium on

AI and Expert Systems, pp. 237-287. 1987.

A. N. Kolmogorov, "On some asymptotic characteristics of completely

bounded metric systems," Dokl Akad Nank, SSSR, vol. 108, no. 3,

pp. 385-389, 1956.

G. Zames, _'On the metric complexity of causal linear systems, e-entropy and

e-dimension for continuous time," IEEE Transactions on Automatic Control,

vol. 124, pp. 222-230, 1979.

S. A. Miller, "PRIME: A bottom-up approach to probabilistic rule

development," Tech. Rep. CIRSSE 5.5, Rensselaer Polytechnic Institute,

Troy: NY, 1990.

i

I

11

i

APPENDIX A

SYMBOL DEFINITIONS

This appendix presents the list of the agent symbols used in the thesis and a de-

scription of what each symbol represents. These descriptions axe modified slightly

from the NASA Flight Telerobotic Servicer Task Analysis Methodology [2].

• Telerobots

- Dextrous Manipulators

• EVA. An Extravehicular Astronaut. It is considered to function as

light, dextrous manipulator.

• FTS. The Flight Telerobotic Servicer. This is a dextrous manipula-

tor, and can manpulate and lift relatively light objects.

• GDMS. A dextrous manipulator which can manpulate and lift light

or heavy objects.

• JRMS. Another dextrous manipulator which can manpulate and lift

light objects.

• SPDM. Another dextrous manipulator which can manpulate and lift

light objects.

• MRMS. Another dextrous manipulator which can manpulate and lift

light or heavy objects.

- Positioners

• SRMS. The Shuttle Remote Manipulator System. This telerobot is

used to position light objects.

• SRMS. The Shuttle Remote Manipulator System. This telerobot is

used to position light objects.

•-, 22.5

226 •

• 5"RM. The Space Station Remote Manipulator System. This teler-

obot is also used to position light objects.

• AP$. The Automatic Positioning System. This telerobot is used to

position heavy objects.

• ATD. The Automatic Translation Device. This telerobot is used to

position heavy objects.

Transporters

• CETA. The Crew and Equipment Transportation Aid. This teler-

obot is used to transport the EVA and moderately heavy equipment.

• MMU. This telerobot is used to transport light manipulators and

light to moderately heavy equipment.

• MT. The Mobile Transporter. This telerobot is used to transport

light to moderately heavy equipment.

• OMV. The Orbital Maneuvering Vehicle. This system is used to

transport light to very heavy equipment.

• ORBITER. This system is used to transport light to very heavy

equipment.

• Tools

Fixturing

• BOLTER. A tool which bolts an object to another.

• CLAMP-H. A clamp used to fixture heavy or large objects.

• CLAMP-L. A clamp used to fixture small or light objects.

• CLAMP-M. A clamp used to fixture medium size and weight objects.

• GLUEGUN. A tool which glues an object to another using strong,

yet removeable, adhesive.

|

!

\

i

227

• GRAPPLER-H. A grappler used to fixture heavy or large objects.

• GRAPPLER-L. A grappler used to fixture small or Ught objects.

• GRAPPLER-M. A grappler used to fixture medium size and weight

objects.

• PINS-H. A pinning device used to fixture heavy or large objects.

• PINS-L. A pinning device used to fixture small or light objects.

• PLVS-M. A pinning device used to fixture medium size and weight

objects.

• WELDER. A tool which attaches an object to another using strong

adhesive.

- Dex-fixturing

• PRYBAR. A tool which aids in the separation of one object from

another.

• SEPA RA TOR. A tool which aids in the separation of one object from

another.

• DEMATOR. A tool which aids in the separation of one object from

another.

- Actuating

• TOOLSETO. A toolset used by light manipulators.

• TOOLSET1. A toolset used by light manipulators.

• TOOLSET2. A toolset used by light manipulators.

• TOOLSET3. A toolset used by heavy manipulators.

• TOOLSET4. A toolset used by heavy manipulators.

• TOOLSET5. A toolset used by two cooperating manipulators.

• TOOLSET6. A toolset used by two cooperating manipulators.

228 •

• Carriers and Parts

- CARRIER-H. A carrier that objects are fixtured to before transporting.

- CARRIER-L. A carrier that only small or light objects are fixtured to

before transporting.

- CARRIER-M. A carrier that small, light or medium size or weight objects

are fixtured to before transporting.

- PALLET-H. A carrier that objects are fixtured to before transporting.

- PALLET-L. A carrier that only small or fight objects are fixtured to

before transporting.

- PALLET-M. A carrier that small, light or medium size or weight objects

are fixtured to before transporting.

- ORU. An Orbital Replacement Unit. This is a module used in the Space

Station Environment. Its function can vary.

- TRUSS. This is the base Space Station structure.

• Sites

- AIRLOCK. The Shuttle airlock.

- A WP. The Assembly Work Platform. This platform is located in the

Space Station enviroment and serves as a place for telerobots to assemble

components of the Space Station.

- CARGO-BA Y. The Cargo Bay of the Space Shuttle.

- MSC. The Mobile Servicing Center. This platform is located in the Space

Station environment and serves as a place for telerobots to service and

repair components of the Space Station.

!

APPENDIX B

SYMBOL CLASS HIERARCHY

\

This appendix presents a diagram of the hierarchy of symbol classes used in the

thesis. The diagram also presents the agent symbols that belong to each symbol

ClasS.

. 2"29

230

<objeC[:>

<dexpos>

<robot>

<_ools>

, <pans>

<sims>

<posu-al._

<fix>

<defix>

<active>

<carries>

<pan-other>

CARGO-BAY

AIRLOCK

AWP

MSC

Figure B.I:

'¢po_

_pOS>

Classificationof agents in the world model

!

I

|

!

[I
231.

<dcx>

<po_>

<u-arm>

FTS

SPDM

/RMS

EVA

SRMS

SSRMS

ATD

APS

MMU

MT

CETA

OMV

<fix>

GDMS

MRMS

ORBITER

<tools>

<parts>

<defix>

<active>

<carriers>

m

<part-other>

CARRmR_L

CARRIER_M

CARRIER_S

ORU

TRUSS

PALLET_L

PALLET_M

PALLETS

Fisure B.2: Classification of agents in the world model, cont'd

232

<_x>

<damps>

<pins>

<fix-o_e:'>

GRAPPLER_H ORAPPI.ER_L

GRAPPLER_M

CLAIVm_H CLAMP_r.

O.A_e_M

PINS_H PINS_L

PINS_M

GLUEGUN BOLTER

WELDER

<def_>

PRY'BAR

SEPARATOR

DEMATOR

BLANK

<acrlve> -

<acLL>

<acLm>

<acLh>

TOOLSET0

TOOLSET1

TOOLSET2

TOOLSET3

TOOLSL:'F4

TOOLSETS

TOOLSET6

I

\

Figure B.3: Classification of agents in the world model, cont'd

!

